Pulmonary Vascular Disease: Pulmonary Hypertension and Pulmonary Embolism

Selim M. Arcasoy, M.D.
Professor of Clinical Medicine
Medical Program Director
Lung Transplantation Program
Columbia University
College of Physicians and Surgeons

Pulmonary Vasculature

- Elastic pulmonary arteries (> 1-2 mm diameter)
- Muscular pulmonary arteries (100 μm-1 mm)
- Pulmonary arterioles (< 30-100 μm) -- no muscle
- 7 times more compliant than systemic vasculature
 - Pulmonary VR is one tenth of systemic VR
 - Pulmonary VR stays low due to “recruitment” and/or “distention” of capillary network

Control of Pulmonary Circulation

- Hypoxia
 - To match regional perfusion/ventilation
- Nervous system
 - Parasympathetic, sympathetic, NANC fibers, neurohormones
- Passive mechanisms
 - Anatomy, gravity, lung volume, alveolar pressure

Hemodynamic Physiology of Pulmonary Hypertension

Back to Physics-Modified Ohm’s Law

- Change in pressure = Flow x Resistance
 - \(P_{pa} - P_{pv} = Q \times PVR \)
 - \(P_{pa} = (Q \times PVR) + P_{pv} \)
 - \(PVR = \frac{(P_{pa} - P_{pv})}{Q} = 100 \text{ dynes/s/cm}^5 \)

- Alterations in PVR, Q and Ppv raise \(P_{pa} \)
 - PVR: occlusive vasculopathy of small arteries / arterioles (PAH), decreased area of pulmonary vascular bed (PE, ILD), hypoxic vasoconstriction (COPD, high altitude)
 - Q: Left to right shunt due to congenital heart disease, liver cirrhosis
 - Ppv: Left heart and valvular disease, constrictive pericarditis

- Increase in PVR is the primary cause of PH

Pulmonary Hypertension

Hemodynamic Definition

- Increased pulmonary vascular pressure
 - Isolated increase in pulmonary arterial pressure or increase in both pulmonary arterial and venous pressures
- Pulmonary arterial hypertension
 - Mean PAP >25 mm Hg at rest or >30 mm Hg with exercise
 - Normal pulmonary capillary wedge pressure (< 15 mm Hg)
 - PVR > 3 Wood units (or >200 dynes/s/cm²)
Pulmonary Hypertension

WHO Classification

- Five major categories based on pathophysiology, diagnostic findings and treatment response

I. Pulmonary arterial hypertension
- Idiopathic
- Familial
- Associated with:
 - Drugs/Anorexigen use (“Fen-phen”, cocaine, metham)
 - Collagen vascular disease
 - HIV infection
 - Portal hypertension
 - Congenital systemic-to-pulmonary cardiac shunts
 - Other (glycogen storage disease, HHT, splenectomy, hemoglobinopathy, myeloproliferative dis, thyroid)
- Associated with significant venous or capillary involvement (PVOD, PCH)

II. Pulmonary hypertension with left heart disease
- Atrial
- Ventricular
- Valvular

III. Pulmonary hypertension associated with lung diseases and/or hypoxemia
- COPD
- ILD
- Sleep-disordered breathing
- Alveolar hypoventilation
- High altitude exposure
- Developmental abnormality

IV. Pulmonary hypertension due to chronic thrombotic and/or embolic disease
- Proximal
- Distal
- Other (tumor, parasite, foreign)

V. Miscellaneous
- Sarcoidosis, Langerhans-cell histiocytosis, vascular compression

Pulmonary Arterial Hypertension

Pathology (I)

- Endothelial thickening
- Smooth muscle hypertrophy

Pathology (II)

- Plexiform lesions
- In situ thrombosis
Pulmonary Arterial Hypertension

- Caused by an array of metabolic abnormalities that result in obliterator remodeling of pulmonary circulation
- Characterized by lumenal occlusion in medium-sized and small pulmonary arteries due to:
 - Excessive cellular proliferation in vascular wall and in situ thrombosis
 - Loss of microvessels and capillaries
- Leads to increase in right ventricular afterload, right ventricular failure and death

Emerging Concepts in PAH

- Proliferative and antiapoptotic environment in vascular wall share common features with neoplasia
- Loss of endothelial cells and microvessels has features of a degenerative disease
- Circulating and vascular inflammatory cells and mediators suggest a systemic inflammatory disease

Genetics and Pathobiology of PAH

- Loss-of-function mutations in gene encoding bone morphogenetic protein receptor type 2 (BMPR2)
 - Detected in 70% of familial PAH and 10-40% of idiopathic PAH
 - Only 20% of BMPR2 mutation carriers develop PAH
- BMPR2 is TGF-β family receptor involved in regulation of apoptosis and growth
 - Decrease in BMPR2 signaling leads to PAH
- "Second hits"
 - Endogenous -other- genetic abnormalities (serotonin pathway), flow change or exogenous stimuli (drugs, viral)
 - Dysregulated inflammation (collagen vascular disease, HIV)

Pathogenesis of Pulmonary Arterial Hypertension

Multiple-Hit Hypothesis

Primary Genetic Background

Environmental Trigger

Modifier Genes

Pulmonary Arterial Hypertension

Modified from Farber. NEJM 2004;351:1655

Imbalance of Vascular Effectors in PAH

- Likely exists because of endothelial-cell dysfunction or injury leading to
 - Vasoconstriction
 - Smooth-muscle cell and endothelial-cell proliferation
 - Thrombosis
Mediators of Pulmonary Vascular Responses in Pulmonary Arterial Hypertension

- Vasoconstriction
- Cell Proliferation
- Thrombosis

Epidemiology of PAH

- Prospective registries in the U.S., France and Scotland
- Prevalence of PAH 15 to 26 cases per 1 million adults
 - Half idiopathic and half associated with other conditions
- ~80% of patients referred to specialized centers are in NYHA class III or IV
- Mean age at diagnosis 36 to 50 years

Pulmonary Hypertension

Clinical Presentation

- Symptoms
 - Dyspnea “out of shape”
 - Fatigue
 - Palpitations
 - Chest pain
 - Lightheadedness
 - Syncope
 - Edema
 - Abdominal fullness, anorexia
 - Cough, hemoptysis, hoarseness (Ortner’s syndrome) less common
- Delay in diagnosis of >2 years

Signs

- Jugular venous distension with large a and v waves
- Loud P2
- Early systolic click
- TR murmur
- Diastolic murmur
- RV heave
- S2 and S4 gallop
- Hepatojugular reflux
- Hepatomegaly
- Pulsatile liver
- Ascites
- Edema
- Hypoperfusion

Diagnosis of Pulmonary Hypertension

- Initial routine evaluation for dyspnea and other symptoms of PH
 - CXR, EKG, pulmonary function testing, arterial blood gas, cardiopulmonary exercise study
- Doppler echocardiography
- Right heart catheterization
 - To confirm diagnosis
 - To characterize hemodynamics
Chest Radiograph

- Enlarged main pulmonary arteries
 - Attenuation of peripheral pulmonary vascular markings (pruning)
- Right ventricular enlargement
- Exclusion of parenchymal lung disease

Electrocardiography

- Right ventricular hypertrophy, right axis deviation, right atrial enlargement

Doppler Echocardiography in PH

- Tricuspid regurgitation
- Right a/v dilatation
- Right ventricular hypertrophy
- Right ventricular dysfunction
- Pulmonic insufficiency
- Intracardiac shunt
- Congenital heart ds
- Left heart size/fx
- Valvular morphology
- Pericardial effusion

Doppler Echocardiography

- Intracardiac shunt
- Congenital heart ds
- Left heart size/fx
- Valvular morphology
- Pericardial effusion

Right Heart Catheterization

- To diagnose CHARACTERIZE pulmonary hypertension
 - Mean pulmonary artery pressure
 - Pulmonary capillary wedge pressure
 - Mean right atrial pressure
 - Cardiac index
 - PVR calculation
- To assess severity of pulmonary hypertension
- To evaluate acute vasoreactivity (vasodilator response)

Right Heart Catheterization

- RA-4 mm Hg
- PA- 90/60 mm Hg
- PCWP- 8 mm Hg
- CI- 2.4 L/min
- PVR ~ 2066 dynes/cm²

- RA-12 mm Hg
- PA- 50/25 mm Hg
- PCWP- 8 mm Hg
- CI- 1.0 L/min
- PVR ~ 2000 dynes/cm²
Detailed Evaluation After Diagnosis of PH

- Medical history
 - PMH: VTE, heart, lung, and blood disorders, HIV
 - Family history
 - Exposures: weight loss medications
 - Drugs: cocaine, methamphetamine

- Diagnostic tests
 - Serologic evaluation for autoimmune disease and HIV
 - Pulmonary function tests
 - Radiologic tests
 - Exclude thromboembolic disease, obstructive and restrictive pulmonary disease
 - Sleep study and nocturnal oxymetry

Radiologic Evaluation

- Ventilation perfusion scan***
 - Pulmonary angiography may be needed to diagnose and characterize CTEPH

- High resolution computed tomography
- Cardiac MRI

Ventilation Perfusion Scan

- To exclude chronic thromboembolic PH

Chest Computed Tomography

- Pulmonary Capillary Hemangiomatosis

Therapies for Pulmonary Arterial Hypertension

- Preventative care
- Anticoagulation
- Supplemental oxygen
- Diuretics
- Inotropes
- Calcium channel blockers
- Prostacyclin analogues
- Endothelin-1 receptor antagonists
- PDE-5 inhibitors
- Cardiopulmonary rehabilitation
- Atrial septostomy
- Lung transplantation
Preventive Measures

Do's and Don’ts

- Cautious, graduated physical activity
- Supplemental oxygen to keep saturation ≥ 92%
- Avoid
 - Heavy physical activity
 - Bending over, rising quickly
 - Hot baths and showers
 - Excessive sodium intake
 - Air travel (use supplemental O2)
 - High altitude >1800 m above sea level (use supplemental O2)
 - Pregnancy
 - Concomitant medications, herbal preparations
 - Invasive procedures
- Immunization against influenza and pneumococcus

General Measures

- Anticoagulation
 - INR goal 1.5 to 2.5
 - Controversial in diseases other than iPAH
- Supplemental oxygen
- Diuretics and inotropic medications
 - Right ventricular failure
 - Monitor electrolytes and renal function
- Digitalis
 - Right ventricular failure and arrhythmia

Survival by Use of Chronic Anticoagulation

![Survival Curve](image)

- Warfarin: 78 64 49 14 7
- No Warfarin: 57 21 14 7

(Fuster, Circulation, 1984)

Vasodilator Testing and Calcium Channel Blockers

- Vasodilator testing during RHC
 - IV adenosine, epoprostenol or inhaled nitric oxide
- Definition of vasodilator responsiveness
 - Decrease of > 10 mm Hg in mean PAP to ≤ 40 mm Hg with an increase in or no change in cardiac output
 - Uncommon, occurring in 10% of patients with iPAH, less common with other subtypes
- iPAH with acute response to vasodilators may have improved survival with long-term use of CCB’s
 - Close follow-up for continued benefit essential as only 50% of patients maintain long-term benefit

Targets for Therapies in PAH

- Downregulation of prostacyclin axis
 - Reversed by exogenous prostacyclin analogues
- Downregulation of NO/cGMP axis
 - Reversed by inhaled NO and PDE5 inhibition
- Upregulation of endothelin axis
 - Reversed by endothelin receptor antagonists

(Targets for Therapy in PH

- Downregulation of prostacyclin axis
 - Reversed by exogenous prostacyclin analogues
- Downregulation of NO/cGMP axis
 - Reversed by inhaled NO and PDE5 inhibition
- Upregulation of endothelin axis
 - Reversed by endothelin receptor antagonists

Prostanoids

- Underproduction of prostacycline in PAH

 - Prostacycline promotes vasodilatation, inhibits vascular proliferation and platelet aggregation

- Epoprostenol (IV)
- Beraprost (PO)
- Treprostinil (SC or IV)
- Iloprost (inhalation)

- Improvement in hemodynamics, exercise capacity and symptoms and survival (with epoprostenol)

Endothelin-Receptor Antagonists

- 2 endothelin-receptor isoforms

 - ETA: vasoconstriction, proliferation of VSMC
 - ETB: Endothelin clearance and vasodilatation

- Dual ETA and ETB-receptor antagonist

 - Bosentan

- Selective ETA-receptor antagonists

 - Ambrisentan
 - Sitaxsentan

- Improvement in exercise capacity and hemodynamics in 12- to 16-wk clinical trials

Phosphodiesterase-5 Inhibitors

- Inhibition of cGMP-specific phosphodiesterase

 - Pulmonary arterial vasodilatation and inhibition of smooth muscle cell growth by enhancing effects of locally produced NO via its second messenger cGMP

- Sildenafil

- Improvement in symptoms, exercise capacity and hemodynamics in short-term studies

Atrial Septostomy and Lung Transplantation

- Atrial septostomy

 - Creation of right-to-left interatrial shunt for right ventricular decompression

 - Palliative or as bridge to lung transplantation

- Lung transplantation

 - Early referral
 - Close monitoring for response to therapy
 - Perform lung transplantation before advanced right heart failure and poor performance status
Pulmonary Arterial Hypertension Treatment Algorithm

General therapy
- Oxygen, anticoagulation, diuretics

Acute vasoreactivity?
- **YES**
- Sildenafil
- **NO**
 - FC-II FC-III FC-IV
 - Sildenafil Treprostinil
 - Bosentan Iloprost Epoprostenol

Sustained response
- Yes
- **Combination Rx?** Atrial Septostomy Lung Tx
- No improvement or worsening

Modified from Badesch. Chest 2007;131:1917

Survival in Idiopathic Pulmonary Arterial Hypertension

<table>
<thead>
<tr>
<th>Location</th>
<th>1st Year Survival</th>
<th>2nd Year Survival</th>
<th>3rd Year Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIH¹</td>
<td>68%</td>
<td>~58%</td>
<td>48%</td>
</tr>
<tr>
<td>New York²</td>
<td>87%</td>
<td>77%</td>
<td>75%</td>
</tr>
<tr>
<td>Chicago³</td>
<td>88%</td>
<td>76%</td>
<td>63%</td>
</tr>
<tr>
<td>Nashville⁴</td>
<td>85%</td>
<td>76%</td>
<td>65%</td>
</tr>
<tr>
<td>Philadelphia⁵</td>
<td>84%</td>
<td>71%</td>
<td>71%</td>
</tr>
<tr>
<td>Clamart⁶</td>
<td>85%</td>
<td>70%</td>
<td>63%</td>
</tr>
<tr>
<td>Germany⁷</td>
<td>68%</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

¹D’Alonzo, Ann Int Med, 1991
²Kawut, AJC, 2005
³McLaughlin, Circ, 2002
⁴Kuhn, AJRCCM, 2003
⁵Kawut, Chest, 2003
⁶Sitbon, JACC, 2002
⁷Wensel, Circ, 2002

Prognosis
- Median survival in untreated PAH < 3 yrs
- Contemporary registries reveal improved survival
 - 65-75% survival at 3 years
 - 47-55% at 5 years in epoprostenol treated patients
- Right heart failure = lower survival rates
 - Elevated RAP, low CI, low MVO₂, poor exercise capacity, pericardial effusion, high BNP
- Close monitoring to evaluate treatment response, plan additional therapy and for lung transplantation

Future Directions
- Discovery of novel mechanistic pathways and translational application into clinical practice
- Stem cell replacement/transplant with endothelial progenitor cells

Pulmonary Embolism

...no wonder you’re having trouble breathing... your cartoonist forgot to draw you nostrils!!
Epidemiology of Pulmonary Embolism

- Estimated to occur in ~600,000 patients annually in the U.S.
- Causes or contributes to ~50,000 to 200,000 deaths
 - Accounts for 15% of in-hospital mortality
- Incidence of acute PE in hospitals ranges from 0.05 to 1%
- Diagnosis is missed in 50-70% of patients antemortem
- Wide spectrum of severity with short-term mortality figures between 2.5% and >50%

Pathophysiology of Pulmonary Embolism

- Sources of PE
 - Iliofemoral veins***
 - Pelvic, upper extremity, renal, right heart
- ~50% of iliofemoral DVT result in PE
 - 50-80% of iliofemoral DVT originate in calf veins
- Virchow’s triad
 - Endothelial injury, stasis, hypercoagulability

Severity and Outcomes in Pulmonary Embolism

Modified from Wood. Chest 2002;121:877-905

Gas Exchange Physiology After PE

- Acute vascular obstruction and vasoconstriction
- Increased alveolar dead space
 - Reflex bronchoconstriction to minimize dead space—**Trivial
 - Hyperventilation due to dead space
- Mechanisms of arterial hypoxemia
 - Shunt (flow through atelectatic regions, opening of latent pulmonary A-V anastomoses due high PAP or intracardiac)
 - VQ inequality (increased flow to low V areas without emboli due to increased PA pressure)
 - Diffusion impairment (high flow with reduced transit time)
 - Increased A-V O₂ difference from RV strain and decreased CO

Pathophysiologic Response to PE (I)

- **Without pre-existing cardiopulmonary disease**
 - Clinical and physiologic findings are related to embolism size
 - mPAP increases with 25-30% obstruction of vascular bed
 - RAP rises with 35-40% obstruction of vascular bed
 - mPAP remains under 40 mm Hg even if there is >50% obstruction (maximal pressure that a normal right ventricle can generate)
 - Cardiac output decreases when obstruction exceeds 50%

Pathophysiologic Response to PE (II)

- **With pre-existing cardiopulmonary disease**
 - Significant hemodynamic instability is common with lesser degree of pulmonary vascular obstruction
 - mPAP is much more elevated and cardiac output decreased with no consistent relationship between cardiovascular instability and magnitude of obstruction
Pathophysiology of Major PE

- PA pressure
- RV afterload
- RV dilatation
- RV dysfunction
- RV ischemia
- RV O2 demand
- RV O2 supply
- Hypotension
- LV preload
- LV output
- RV cardiac output
- Septal shift towards LV
- Vicious Cycle
- Coronary perfusion
- Risk Factors for Venous Thromboembolism
 - Acquired Factors
 - Reduced mobility
 - Advanced age
 - Cancer and chemotherapy
 - Acute medical illness
 - Major surgery and trauma
 - Spinal cord injury
 - Pregnancy/postpartum
 - Oral contraceptives
 - Hormone replacement Rx
 - Central venous catheter
 - Polycythemia vera
 - Hereditary factors
 - Factor V Leiden
 - Activated protein C resistance without F V L
 - Antithrombin deficiency
 - Protein C and S deficiency
 - Prothrombin gene mutation
 - Dysfibrinogenemia
 - Plasminogen deficiency
 - Probable factors
 - Elevated lipoprotein(a)
 - Elevated homocysteine, factors VIII, IX, XI, fibrinogen

Clinical Findings of PE

- Symptoms and signs
 - Dyspnea, chest pain, wheezing, cough, apprehension, leg pain and swelling, syncope, hemoptysis, fever
 - Tachycardia, tachypnea, accentuated P2, rales, JVD, DVT
- Chest radiograph
 - Atelectasis, pleural effusion, pleural-based opacity, cardiomegaly, diaphragmatic elevation, prominent central PA, Westermark sign
- ECG
 - Anterior T-wave inversions, ST-T segment changes, RBBB, S1Q3T3
- Arterial blood gas
 - Hypoxemia and hypocapnia

Diagnostic Evaluation

- Develop an estimate of pretest clinical probability based on symptoms, signs and risk factors
 - High (very likely), low (unlikely) or intermediate (possible/probable)
 - Clinical prediction scores (Wells or Geneva)
- Evaluation must be RAPID since majority of deaths occur within 6 hours of presentation
- Concomitant diagnosis, treatment, and resuscitation if needed
 - Start anticoagulation if PE is highly suspected and there are no contraindications

Estimation of Pretest Clinical Probability

- High (very likely)
 - Symptoms compatible with PE, not explained otherwise
 - Sudden-onset dyspnea, tachypnea, pleuritic pain, syncope
 - CXR, ECG, ABG findings compatible with PE, not explained otherwise
 - Presence of risk factors for venous thromboembolism
- Low (unlikely)
 - Symptoms incompatible with PE or compatible symptoms explained by alternative diagnoses (eg. pneumothorax, pneumonia)
 - No CXR, ECG findings of PE or findings that can be explained otherwise
 - Absence of risk factors for venous thromboembolism
- Intermediate (possible/probable)

Quantitative Clinical Assessment for PE

<table>
<thead>
<tr>
<th>Modified Wells Criteria</th>
<th>Probability Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical symptoms of DVT (leg swelling, pain)</td>
<td>3.0</td>
</tr>
<tr>
<td>Other diagnosis less likely than PE</td>
<td>3.0</td>
</tr>
<tr>
<td>Heart rate >100</td>
<td>1.5</td>
</tr>
<tr>
<td>Immobilization (≥3 days) or surgery within last 4 weeks</td>
<td>1.5</td>
</tr>
<tr>
<td>Previous DVT/PE</td>
<td>1.5</td>
</tr>
<tr>
<td>Hemoptysis</td>
<td>1.0</td>
</tr>
<tr>
<td>Malignancy</td>
<td>1.0</td>
</tr>
<tr>
<td>Probability</td>
<td>Score</td>
</tr>
<tr>
<td>Traditional clinical probability assessment</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>>6.0</td>
</tr>
<tr>
<td>Moderate</td>
<td>2.0 to 6.0</td>
</tr>
<tr>
<td>Low</td>
<td><2.0</td>
</tr>
<tr>
<td>Simplified clinical probability assessment</td>
<td></td>
</tr>
<tr>
<td>PE likely</td>
<td>≥4.0</td>
</tr>
<tr>
<td>PE unlikely</td>
<td>≤4.0</td>
</tr>
</tbody>
</table>
Diagnostic Tests For Major PE

- Chest radiograph and EKG
- VQ scan
- CT pulmonary angiography (CTPA)
- Duplex ultrasonography
- Laboratory markers
 - D-dimer, cardiac troponins, NT-pro-BNP and BNP
- Echocardiography
 - Findings compatible with or diagnostic of PE
 - Excludes alternative diagnoses in major PE
 - Acute MI, pericardial tamponade, aortic dissection
- Pulmonary angiography

Pulmonary Embolism

Diagnostic Algorithm Using Wells Criteria for Suspected Pulmonary Embolism

- Clinical Probability Score

 - Low (<2) or intermediate score (2-6)
 - High score (>6)

 - D-Dimer assay (highly sensitive)
 - Positive
 - CTA or VQ scan
 - Negative
 - No PE
 - PE confirmed

 - Do not treat

Konstantinides. NEJM 2008;359:2804

Treatment of Acute Pulmonary Embolism

- Anticoagulation with heparin products
 - Reach therapeutic levels quickly
 - Transition to oral anticoagulation
- Inferior vena cava filter placement
 - Anticoagulation contraindicated
 - DVT present along with severe PE
- Thrombolytic therapy
 - Hemodynamic instability
- Surgical embolectomy
 - Major PE unresponsive to anticoagulation, thrombolysis or contraindications to medical Rx

Whoo—way too much information!"