Pulmonary Diseases: Structure-Function Correlation I

Review of Histology/Histopathology and Airway Diseases (Obstructive)

Alain C. Borczuk, M.D.
Department of Pathology

Pulmonary Diseases: Structure-Function Correlation I

• Overview
 – Two lectures will follow the structure/function section of the syllabus:
 • Lecture 1 - Histology/histopathology review and Airways disease.
 • Lecture 2 - Interstitial and parenchymal disease, and vascular disease.

Goals:
• To review microanatomy/histology of normal lung and compare to pathologic alterations within those elements
• To observe the relationship between structural/morphologic manifestation of diseases to measurable functional parameters using prototypical diseases of the airways
• To describe the pathology, Gross and microscopic, of these pulmonary diseases.

• Cast of Characters
 – Airways
 • Conducting
 • Respiratory
 – Vessels
 • Arteries, arterioles - pulmonary and bronchial
 • Capillaries
 • Veins/Venules and Lymphatics
 – Pleura- visceral and parietal

• Airways Conducting Zone
 • Trachea
 • Bronchi - ciliated and goblet cells, elastic tissue, smooth muscle, glands, cartilage
 • Bronchioles - (1 mm) - No cartilage or bronchial glands, ciliated lining, no goblet cells, smooth muscle

• Cell types
 – CILIATED CELL - beating of cilia contribute to mucociliary elevator
 – GOBLET CELL - Mucus secretion
 – BASAL CELL - reserve cell
 – KULCHITSKY CELL - neuroendocrine cells.
Main stem bronchus
Lobar bronchus (5 lung lobes)
Segmental bronchus (10 bronchopulmonary segments on right, 9 on left)
Branching continues as airways become bronchioles, then at terminal bronchioles airways transition into respiratory bronchioles
About 20 branch generations from beginning to end

Squamous metaplasia

Normal airway

Pulmonary Diseases: Structure-Function Correlation 1

- Airways Respiratory Zone
 - Respiratory bronchiole - lined by ciliated cells and **CLARA CELLS**
 - Alveolar ducts/sacs
 - **Type I cells**
 - 90% of alveolar surface
 - **Type II cells**

- Cell types
 - **CLARA CELLS** - produce a component of surfactant and are the bronchiolar reserve cell
 - **TYPE I CELLS** - thin lining cell for gas exchange
 - **TYPE II CELLS** - surfactant and alveolar reserve cell
Pulmonary Diseases: Structure-Function Correlation I

- Vessels - Pulmonary
 - Arteries/arterioles - travel and divide with bronchi and bronchioles
 - Produce capillary bed in alveoli for gas exchange
 - Venules collect capillary blood into lobular septa, forming veins and joining at the hilum.

- Vessels - Bronchial
 - Artery from aorta
 - Supplies bronchial tree up to respiratory bronchiole
 - Venous drainage to azygous/hemiazygous
Pulmonary Diseases: Structure-Function
Correlation 1

• Cast of Characters
 – Airways
 • Conducting
 • Respiratory
 – Vessels
 • Arteries, arterioles - pulmonary and bronchial
 • Capillaries
 • Veins/Venules and Lymphatics
 – Pleura- visceral and parietal
Pulmonary Diseases: Structure-Function Correlation I

- Disease of the acini and interstitium
 1) Replacement of air with fluid, inflammatory cells or cellular debris
 2) Thickening of alveolar walls and interstitium
 3) Destruction of acinar walls
- Disease of the conducting airways
- Disease of the pulmonary vasculature

Pulmonary Diseases: Structure-Function Correlation I

- Disease of the acini and interstitium
 1) Replacement of air with fluid, inflammatory cells or cellular debris
 2) Thickening of alveolar walls and interstitium
 3) Destruction of acinar walls
- Disease of the conducting airways
- Disease of the pulmonary vasculature

Pulmonary Diseases: Structure-Function Correlation I

- Disease of the conducting airways
 - Asthma
 - Chronic bronchitis
 - Bronchiectasis
 - Permanent dilation of bronchi and bronchioles, due to destruction of elastic tissue and muscle.

Disease of the conducting airways - Bronchiectasis

- Dilatation of bronchi and bronchioles, usually due to necrosis of wall and obstruction
 - Foreign body
 - Mucoid impaction
 - Aspergillus
 - Cystic fibrosis
 - Immotile cilia
 - Chronic bronchitis and infection
- Gross Pathol. - Dilated bronchi, filled with mucus or pus, lower lobes.
- Microscopic -
 - Can have acute and chronic inflammation
 - Varying degrees of fibrosis
Pulmonary Diseases: Structure-Function
Correlation 1

• Disease of the conducting airways
 – Asthma
 – Chronic bronchitis
 – Bronchiectasis

Disease of the conducting airways - ASTHMA

• Bronchospasm, usually reversible
 – Allergic trigger
 – non-allergic airway hyperresponsiveness

• Anatomic targets, triggered by medications,
 smooth muscle hypertrophy
 bronchial epithelium and smooth muscle.

• Inflammation

• Obstructive disease

• Gross pathology
 – hyperinflation, severe if status asthmaticus
 – Macus plugging

• Microscopic
 – Inflammation, eosinophils
 – Basement membrane thickening
 – edema
Disease of the conducting airways - ASTHMA

• Gross pathology
 – hyperinflation
 – Mucus plugging
• Microscopic
 – Smooth muscle hypertrophy
 – Inflammation, eosinophils
 – Basement membrane thickening
 – edema

Functional significance
• Total lung capacity - increased during attack
• Work of breathing increased due to airway resistance
• Airway resistance increased, on expiration more than inspiration

Disease of the conducting airways - Chronic bronchitis

• Persistent cough with sputum production for 3 months in two 2 consecutive years.
• Smoking
• Repeated infections

• Gross Pathology: Brown discolored, mucus filled bronchi.
• Microscopic:
 – Bronchial gland hyperplasia
 – Goblet cell metaplasia
 – Chronic inflammation
 – Fibrosis of bronchioles
 – Loss of cilia

Pulmonary Diseases: Structure-Function Correlation 1

• Disease of the conducting airways
 – Asthma
 – Chronic bronchitis
 – Bronchiectasis
Chronic bronchitis

- **Gross Pathology:** Brown discolored, mucus filled bronchi.

- **Microscopic:**
 - Bronchial gland hyperplasia
 - Goblet cell metaplasia
 - Chronic inflammation
 - Fibrosis of bronchiolar walls
 - Loss of cilia

- **Functional Significance**
 - Airway resistance, due to mucus, edema and narrowing. Obstructive disease
 - Degree of obstruction determines extent of V/Q mismatch
 - Lung capacity normal
 - Right heart failure and pulmonary hypertension can occur – hypoxic vasoconstriction and endothelial dysfunction

Pulmonary Diseases: Structure-Function Correlation I

- Disease of the acini and interstitium
 1) Replacement of air with fluid, inflammatory cells or cellular debris
 2) Thickening of alveolar walls and interstitium
 3) Destruction of acinar walls
- Disease of the conducting airways
- Disease of the pulmonary vasculature

From NEJM
2000;343:270
Destruction of acinar walls - Emphysema

- Obstructive disease
- Involves the airway distal to the terminal conducting bronchiole
- Airway wall is damaged, and fibrosis can be present.
- Is classified by pattern/location of damage within the respiratory acinus

Centriacinar (Centrilobular)
- Smoking
- Damage is to the respiratory bronchiole. When severe disease develops, whole acinus involved.
- Upper lobes, especially apical portions most affected

Panacinar (Panlobular)
- Damage is to the entire acinar unit from respiratory bronchiole to alveolar sac
- More severe at bases, but is more diffuse than CLE
- Alpha-1 antitrypsin deficiency

Pathogenesis

- Protease/Antiprotease hypothesis
 - Imbalance between neutrophil derived elastase and deficiency in anti-elastase activity from alpha-1-antitrypsin
 - Neutrophil elastase is unchecked, causing tissue destruction
 - Smoking causes more rapid evolution of panacinar emphysema.

- In panacinar emphysema, deficiency in alpha 1 anti-trypsin is a genetic defect
- In centrilobular emphysema, the interplay of cigarette smoke, acquired deactivation of A1AT activity and activation of a perhaps broader spectrum of neutrophils and macrophage derived proteases may be significant. These may include proteinase 3, cathepsins and matrix metalloproteinases (1,2,9,12)
- Other inhibitors of protease activity may also play a role – e.g. TIMPs
Destruction of acinar walls - Emphysema

CENTRILOBULAR VS. PANACINAR

• Gross pathology
 – Upper lobe, irregularly dilated airspaces
 – Thin walled and grossly apparent

• Microscopic
 – Dilated spaces, alongside normal alveoli
 – Anthracotic pigment

• Gross Pathology
 – Lower lobe, more uniformly dilated spaces
 – Voluminous lungs

• Microscopic
 – Dilated spaces, uniformly dilated.

Destruction of acinar walls - Emphysema

CENTRILOBULAR VS. PANACINAR

• Gross pathology
 – Upper lobe, irregularly dilated airspaces
 – Thin walled and grossly apparent

• Microscopic
 – Dilated spaces, alongside normal alveoli
 – Anthracotic pigment

• Gross Pathology
 – Lower lobe, more uniformly dilated spaces
 – Voluminous lungs

• Microscopic
 – Dilated spaces, uniformly dilated.
Destruction of acinar walls - Emphysema

Structural vs. Functional

- **Gross pathology**
 - Upper lobe, irregularly dilated airspaces
 - Thin walled and grossly apparent

- **Microscopic**
 - Dilated spaces, alongside normal alveoli
 - Anthracotic pigment

- **Functional**
 - Total lung capacity increase
 - Lung compliance increased (elastin destruction)
 - V/Q mismatch mild - airway and capillary destruction
 - Recoil decreased; lose radial traction on airways
 - Obstructive; worsens on forced expiration