Pulmonary Diseases: Structure-Function Correlation I

Review of Histology/Histopathology and Airway Diseases (Obstructive)

Alain C. Borczuk, M.D.
Department of Pathology

• Overview
 – Two lectures will follow the structure/function section of the syllabus:
 • Lecture 1 - Histology/histopathology review and Airways disease.
 • Lecture 2 - Interstitial and parenchymal disease, and vascular disease.
Pulmonary Diseases: Structure-Function Correlation I

Goals:
- To review microanatomy/histology of normal lung and compare to pathologic alterations within those elements
- To observe the relationship between structural/morphologic manifestation of diseases to measurable functional parameters using prototypical diseases of the airways
- To describe the pathology, Gross and microscopic, of these pulmonary diseases.
Pulmonary Diseases: Structure-Function Correlation I

- Cast of Characters
 - Airways
 - Conducting
 - Respiratory
 - Vessels
 - Arteries, arterioles - pulmonary and bronchial
 - Capillaries
 - Veins/Venules and Lymphatics
 - Pleura- visceral and parietal

Pulmonary Diseases: Structure-Function Correlation I

- Airways Conducting Zone
 - Trachea
 - Bronchi - ciliated and goblet cells, elastic tissue, smooth muscle, glands, cartilage
 - Bronchioles - (1 mm) - No cartilage or bronchial glands, ciliated lining, no goblet cells, smooth muscle

- Cell types
 - CILIATED CELL - beating of cilia contribute to mucociliary elevator
 - GOBLET CELL - Mucus secretion
 - BASAL CELL - reserve cell
 - KULCHITSKY CELL - neuroendocrine cells.
Main stem bronchus
Lobar bronchus (5 lung lobes)

Segmental bronchus (10 bronchopulmonary segments on right, 9 on left)
Branching continues as airways become bronchioles, then at terminal bronchioles airways transition into respiratory bronchioles
About 20 branch generations from beginning to end

Normal airway
Squamous metaplasia

Pulmonary Diseases: Structure-Function Correlation 1

- Airways Respiratory Zone
 - Respiratory bronchiole - lined by ciliated cells and CLARA CELLS
 - Alveolar ducts/sacs
 - Type I cells
 - 90% of alveolar surface
 - Type II cells

- Cell types
 - CLARA CELLS - produce a component of surfactant and are the bronchiolar reserve cell
 - TYPE I CELLS - Thin lining cell for gas exchange
 - TYPE II CELLS - surfactant and alveolar reserve cell
Pulmonary Diseases: Structure-Function Correlation 1

- **Vessels - Pulmonary**
 - Arteries/arterioles - travel and divide with bronchi and bronchioles
 - Produce capillary bed in alveoli for gas exchange
 - Venules collect capillary blood into lobular septa, forming veins and joining at the hilum.

- **Vessels - Bronchial**
 - Artery from aorta
 - Supplies bronchial tree up to respiratory bronchiole
 - Venous drainage to azygous/hemiazygous
Pulmonary Diseases: Structure-Function Correlation I

• Cast of Characters
 – Airways
 • Conducting
 • Respiratory
 – Vessels
 • Arteries, arterioles - pulmonary and bronchial
 • Capillaries
 • Veins/Venules and Lymphatics
 – Pleura- visceral and parietal
Pulmonary Diseases: Structure-Function Correlation I

- Disease of the acini and interstitium
 1) Replacement of air with fluid, inflammatory cells or cellular debris
 2) Thickening of alveolar walls and interstitium
 3) Destruction of acinar walls
- Disease of the conducting airways
- Disease of the pulmonary vasculature
Pulmonary Diseases: Structure-Function Correlation I

- Disease of the conducting airways
 - Asthma
 - Chronic bronchitis
 - Bronchiectasis
 - Permanent dilation of bronchi and bronchioles, due to destruction of elastic tissue and muscle.

Disease of the conducting airways - Bronchiectasis

- Dilatation of bronchi and bronchioles, usually due to necrosis of wall and obstruction
 - Foreign body
 - Mucoid impaction
 - Aspergillus
 - Cystic fibrosis
 - Immotile cilia
 - Chronic bronchitis and infection

- Gross Pathol. - Dilated bronchi, filled with mucus or pus, lower lobes.
- Microscopic -
 - Can have acute and chronic inflammation
 - Varying degrees of fibrosis
Pulmonary Diseases: Structure-Function Correlation I

• Disease of the conducting airways
 – Asthma
 – Chronic bronchitis
 – Bronchiectasis
Disease of the conducting airways -
ASTHMA

• Bronchospasm, usually reversible
 – Allergic trigger
 – non-allergic airway hyperresponsiveness

• Anatomic targets
 bronchial epithelium and smooth muscle.

• Inflammation
• Obstructive disease

• Gross pathology
 – hyperinflation, severe if status asthmaticus
 – Mucus plugging

• Microscopic
 smooth muscle hypertrophy
 – Inflammation, eosinophils
 – Basement membrane thickening
 – edema

Pathophysiology of Asthma

Etagenwechsel
Die Atemwegserkrankung wandert tiefer

Bronchialast
Normaler Bronchialast
Bronchialast
eines Asthmakerns

Normal Lung
Asthmatic Lung
Disease of the conducting airways - ASTHMA

- Gross pathology
 - hyperinflation
 - Mucus plugging
- Microscopic
 - Smooth muscle hypertrophy
 - Inflammation, eosinophils
 - Basement membrane thickening
 - Edema

Functional significance

- Total lung capacity - increased during attack
- Work of breathing increased due to airway resistance
- Airway resistance increased, on expiration more than inspiration

Pulmonary Diseases: Structure-Function Correlation I

- Disease of the conducting airways
 - Asthma
 - Chronic bronchitis
 - Bronchiectasis
Disease of the conducting airways - Chronic bronchitis

- Persistent cough with sputum production for 3 months in two consecutive years.
- Smoking
- Repeated infections

- Gross Pathology: Brown discolored, mucus filled bronchi.
- Microscopic:
 - Bronchial gland hyperplasia
 - Goblet cell metaplasia
 - Chronic inflammation
 - Fibrosis of bronchioles
 - Loss of cilia
Disease of the conducting airways - Chronic bronchitis

• **Gross Pathology**: Brown discolored, mucus filled bronchi.
• **Microscopic**:
 – Bronchial gland hyperplasia
 – Goblet cell metaplasia
 – Chronic inflammation
 – Fibrosis of bronchiolar walls
 – Loss of cilia

• **Functional Significance**
 – Airway resistance, due to mucus, edema and narrowing. **Obstructive disease**
 – Degree of obstruction determines extent of V/Q mismatch
 – Lung capacity normal
 – Right heart failure and pulmonary hypertension can occur – hypoxic vasoconstriction and ?endothelial dysfunction
Pulmonary Diseases: Structure-Function Correlation I

- Disease of the acini and interstitium
 1) Replacement of air with fluid, inflammatory cells or cellular debris
 2) Thickening of alveolar walls and interstitium
 3) Destruction of acinar walls
- Disease of the conducting airways
- Disease of the pulmonary vasculature

From NEJM 2000;343:270
Destruction of acinar walls - Emphysema

- Obstructive disease
- Involves the airway distal to the terminal conducting bronchiole
- Airway wall is damaged, and fibrosis can be present.
- Is classified by pattern/location of damage within the respiratory acinus

Destruction of acinar walls - Emphysema

- Centriacinar (Centrilobular)
 - Smoking
 - Damage is to the respiratory bronchiole. When severe disease develops, whole acinus involved.
 - Upper lobes, especially apical portions most affected
- Panacinar (Panlobular)
 - Damage is to the entire acinar unit from respiratory bronchiole to alveolar sac
 - More severe at bases, but is more diffuse than CLE
 - Alpha -1 antitrypsin deficiency
Destruction of acinar walls - Emphysema

Pathogenesis
- Protease/Antiprotease hypothesis
 - Imbalance between neutrophil derived elastase and deficiency in anti-elastase activity from alpha-1-antitrypsin
 - Neutrophil elastase is unchecked, causing tissue destruction
 - Smoking causes more rapid evolution of panacinar emphysema.

Destruction of acinar walls - Emphysema

Pathogenesis
- Protease/Antiprotease hypothesis
 - In panacinar emphysema, deficiency in alpha 1 anti-trypsin is a genetic defect
 - In centrilobular emphysema, the interplay of cigarette smoke, acquired deactivation of A1AT activity and activation of a perhaps broader spectrum of neutrophils and macrophage derived proteases may be significant. These may include proteinase 3, cathepsins and matrix metalloproteinases (1,2,9,12)
 - Other inhibitors of protease activity may also play a role – e.g. TIMPs
Destruction of acinar walls - Emphysema

CENTRIOLOBULAR VS. PANACINAR

- **Gross pathology**
 - Upper lobe, irregularly dilated airspaces
 - Thin walled and grossly apparent
- **Microscopic**
 - Dilated spaces, alongside normal alveoli
 - Anthracotic pigment

- **Gross Pathology**
 - Lower lobe, more uniformly dilated spaces
 - Voluminous lungs
- **Microscopic**
 - Dilated spaces, uniformly dilated.
Destruction of acinar walls - Emphysema

CENTRILOBULAR VS. PANACINAR

• Gross pathology
 – Upper lobe, irregularly dilated airspaces
 – Thin walled and grossly apparent
• Microscopic
 – Dilated spaces, alongside normal alveoli
 – Anthracotic pigment

• Gross Pathology
 – Lower lobe, more uniformly diluted spaces
 – Voluminous lungs
• Microscopic
 – Dilated spaces, uniformly dilated.
Destruction of acinar walls - Emphysema

STRUCTURAL VS. FUNCTIONAL

STRUCTURAL
- Gross pathology
 - Upper lobe, irregularly dilated airspaces
 - Thin walled and grossly apparent
- Microscopic
 - Dilated spaces, alongside normal alveoli
 - Anthracotic pigment

FUNCTIONAL
- Total lung capacity increase
- Lung compliance increased (elastin destruction)
- V/Q mismatch mild - airway and capillary destruction
- Recoil decreased; lose radial traction on airways
 - Obstructive; worsens on forced expiration
