Pulmonary Physiology: A Review

Robert C. Basner, MD

Associate Professor of Clinical Medicine
Director, Adult Pulmonary Diagnostic Unit
Director, Cardiopulmonary Sleep and Ventilatory Disorders Center
Columbia University College of Physicians and Surgeons

Pulmonary Physiology

- Control of Breathing
- Mechanics/Work of Breathing
- Ventilation
- Gas transport (including pulmonary circulation)
- Gas Exchange (including diffusion of gas/gas transfer)

"When you can't breathe, nothing else matters."

Control of Breathing

- Keep PCO₂ 40 mmHg awake
- Neural Control
- Chemical Control

Neural Control

- Inspiratory inhibition reflex (Hering Breuer)
 - irritant, mechano, j receptors: stimulation in patients with, e.g.,
 interstitial fibrosis, pulmonary embolism, atelectasis
- Stimulation of mechanoreceptors in airways: can cause tachypnea, bronchoconstriction

Chemical control

- CO₂ stimulation
- Hypoxemic stimulation
- H⁺ stimulation

Chemical Control: CO₂ stimulation

- Central >> peripheral chemoreceptors
- Chronically elevated PaCO₂ = increased ECF [HCO3⁻] so acute increase in PaCO₂ will induce less of a change in [H⁺] and therefore less stimulus to ventilation

Chemical Control: Hypoxemic Stimulation

- Peripheral chemoreceptors only
- Low PaO₂ → increased V_E
- The increase in V_E is attenuated by the decreased PaCO₂ that results (see previous slide)

Chemical Control: Hydrogen ion stimulation

- Metabolic acidosis stimulates peripheral chemoreceptors
- Acute metabolic acidemia → increased V_E
- Chronic metabolic acidemia \rightarrow attenuated by \downarrow PaCO₂

Chemical Control of Breathing

- When WOB elevated, PCO₂ not as potent a stimulus to breathe
- Sleep depresses ventilatory stimulation; PaCO₂ rises by several mmHg in sleep (most in REM sleep)

Mechanical Properties of the Respiratory System

- Lung Compliance
- Chest Wall Compliance
- Airway Resistance

 In disease states, these mechanical properties are altered!!!

Lung Compliance

Compliance =
$$\frac{1}{\text{Elastance}} = \frac{\Delta \text{volume}}{\Delta \text{pressure}}$$

Two determinants of lung compliance

- Elastic properties of lung parenchyma
- Surface tension in alveoli

Elastic Properties of Lung Parenchyma

- Elastic fibers (easily stretched)
 - Elastin
 - Microfibrils
- Fibril forming collagens
 - Tensile strength
 - Types I, II, III, V, XI
- Geometric arrangement
 - "Nylon stocking" elasticity
 - Nylon stocking is easy to stretch
 - Nylon threads are difficult to stretch

Section of human lung shelastin fibers in alveolar was surrounding blood vessels

Surface Tension of Alveolar Lining Fluid

- Surface Tension
 - Technical definition: "the force acting across an imaginary line 1cm long in the surface of the liquid"
 - Better definition: the force that minimizes liquid surface area
 - Attractive forces are stronger between two liquid molecules than between gas and liquid molecules

Pulmonary Surfactant <u>decreases</u> Alveolar Surface Tension

- Type II pneumocytes produce surfactant
- Low surface tension = increased compliance

Clinical correlation

- What happens if...
 - the lung has too much interstitial water?
 - the lung has too much collagen?
 - the elastic tissue of the lung is partially destroyed?
 - the lung has too little surfactant?
 - all of the gas is removed from the right lower lobe?

Pressure-Volume Curves

Chest Wall Compliance

The chest wall is elastic too!

At FRC, chest wall elastic recoil (pulling outward) = lung elastic recoil (pulling inward)

Clinical correlation

- What happens if...
 - There is air in the pleural space?
 - There is too much liquid in the pleural space?
 - The visceral pleural is covered in scar tissue?

Airway Resistance during Laminar Flow

$$\dot{V}=rac{\Delta P}{R}$$

$$R = \frac{8\eta l}{\pi r^4}$$

V = flow rate $\Delta P = driving pressu$ r = radius of the tube $\eta = viscosity$ l = length of the tube

Airway Resistance is determined by Airway <u>Caliber</u>

Intraluminal: e.g., Secretions

Intramural: Extraluminal: e.g., Edema e.g., Loss of radial traction

Application of the Alveolar Ventilation Equation

$$P_a CO_2 \propto rac{\dot{V}_{CO_2}}{\dot{V}_A}$$

What happens if...

- 1. Dead space increases (minute ventilation held constant)
- 2. Minute ventilation increases (V_D is constant)
- 3. CO₂ production increases

Gas Transport: Pulmonary Circulation and Diffusion of Gas (Gas Transfer)

- Conduction of blood coming from the tissues through the alveolar capillaries so that O₂ can be added and CO₂ removed.
- Pulmonary vessels=low pressures and low resistance to flow (thin walled)
- Resistance=driving pressure/flow (Q)
- Most resistance in the arterioles and capillaries
- Driving pressure=pressure at the beginning of the pulmonary circulation (the pulmonary artery) and other end (left atrium); normally, eg, blood flow 6 L/min and mean driving pressure of 9 mmHg, resistance is 9mmHg/6 L/min, or 1.5 mmHg/L/min (~10% of systemic pressure).

Gas Transport: Pulmonary Circulation and Diffusion of Gas (Gas Transfer)

- Pulmonary capillary blood volume increases during inspiration and exercise
- Reduced when patients receive mechanical ventilation (intrathoracic pressure is raised, thus impeding venous return to the heart)
- Patients with increased pulmonary pressure (eg pulmonary hypertension, pulmonary embolism)=cardiodynamic consequences as well as disturbance of gas transfer

Diffusing Capacity (Transfer Factor)

Gas Transport: Pulmonary Circulation and Diffusion of Gas (Gas Transfer)

- Transfer of O₂ and CO₂ between alveolar gas and pulmonary capillary blood is entirely passive
- The rate of diffusion of gas across alveolar-capillary barrier is determined by
 - solubility of gas in liquid
 - density of gas
 - partial pressure difference between alveolar air and pulmonary capillary blood
 - surface area available for diffusion
- CO₂ diffusion not a clinical problem because CO₂ much more soluble and diffusible than oxygen between air and blood
- Total diffusing capacity includes uptake by hemoglobin and rate of flow

Gas Transport: Pulmonary Circulation and Diffusion of Gas (Gas Transfer)

"Diffusion Capacity" vs Diffusion

 Note that: decreased diffusing capacity/gas transfer abnormality can result from numerous abnormalities not having anything to do with diffusion block itself

"Diffusion Capacity" vs Diffusion

- So when we say diffusion abnormality=cause of hypoxemia, we mean those abnormalities which involve some form of diffusion block, or other inability to transfer gas completely (eg, low PIO₂+ *decreased* circulatory time) so that insufficient transfer of alveolar PO₂ occur
- Low alveolar volume, low Hgb, may result in low diffusing capacity as measured by transfer of CO, and low O₂ content, but not low PaO₂

Gas Transport: CO₂

- CO₂ in physical solution: most carried in RBCs either as bicarbonate, or bound to Hgb (carbaminoHgb)
- Some is dissolved in plasma

Gas Transport: Oxygen

- O₂ combined with Hgb in RBCs, and dissolved O₂ in physical solution in the plasma
- Normal: 1 gm of Hgb able to combine chemically with 1.34 ml O_2
- Thus: O₂ capacity=1.34 ml O₂ /gmHgb
- If 15 gm Hgb/100 ml blood, O₂ capacity=20 ml O₂ /100 ml blood=200 ml O₂ /liter blood
- Dissolved $O_2 = .003 \text{ ml } O_2 / 100 \text{ ml blood/mmHg PaO}_2$
- CaO₂ =SaO₂ x [O₂ capacity] + dissolved O₂
- If $PaO_2 = 100 \text{ mmHg}$, and Hgb=15, then O_2 content = 200 ml O_2 /liter blood + 3 ml O_2 /liter blood=~203 ml O_2 /liter blood x SaO_2

Hypoxemia

 Low partial pressure of O₂ in blood (PaO₂) OR low O₂ content

Hypoxia

- Metabolic O₂ deficiency unable to meet tissue demands
- Hypoxia causes are:
 - o "stagnant", as with impaired blood flow; normal PaO₂ and SaO₂
 - o "histocytoxic", as with metabolic impairment using O_2 , such as cyanide poisoning; normal PaO_2 and SaO_2
 - o "anemic", as with low Hgb or carbon monoxide poisoning; normal PaO₂ and SaO₂
 - o "hypoxic" or "hypoxemic", as with impaired oxygenation such as low V/Q, shunt, diffusion block, or low PIO₂ such as high altitude; PaO₂ and SaO₂ decreased

Gas Transport: Pulmonary Circulation and Diffusion of Gas (Gas Transfer)

- Causes of Hypoxemia
 - Hypoventilation
 - Low PiO₂
 - Diffusion abnormality (must be severe if at rest)
 - V/Q mismatch
 - Shunt
- Note that low V/Q does not=shunt
- Degree of O₂ saturation depends on O₂ tension

■Below PaO₂ 60 mmHg, O₂ sat and content decrease rapidly

• (ie, rapid dissociation and tissue unloading)

■Right shift=decreased O2 affinity (decreased SaO2) for a given PaO2

• (ie, more tissue unloading: increased temp, 2,3 DPG, PCO2, low pH)

■Left shift=increased O2 affinity (increased SaO2) for a given PaO2

• (ie, less tissue unloading: low 2,3 DPG, high CO, low temp, methHgb, fetal Hgb)

Physiologic Causes of Hypoxemia

Widening of AaDO₂

- Diffusion Abnormality
- V/Q mismatch
- Shunt

• No widening of AaDO₂:

- Hypoventilation
- Low PIO₂
 - may contribute to widening if impaired diffusion

Alveolar Gas Equation

$$P_I O_2 = F_i O_2 \times (P_B - P_{H_2 O})$$

$$P_{A}O_{2} = P_{I}O_{2} - \frac{P_{A}CO_{2}}{R} + \left[P_{A}CO_{2} \times F_{I}O_{2}x \frac{(1-R)}{R}\right]$$

$$P_A O_2 \approx P_I O_2 - \frac{P_A C O_2}{R}$$

R=Respiratory Exchange Ratio: (gas R=CO₂ added to alveolar gas by blood/amount of O₂ removed from alveolar gas by blood; low V/Q=low R); normal=0.8

Two patients breathing room air at sea level:

- 1. $PaO_2=40 \text{ mmHg}$, $PaCO_2=90 \text{ mmHg}$:
- 2. $PaO_2=40 \text{ mmHg}$, $PaCO_2=22 \text{ mmHg}$:

Calculate the Alveolar-arterial PO2 gradient What is the pulmonary pathophysiology?