Pulmonary Physiology:
A Review

Robert C. Basner, MD
Associate Professor of Clinical Medicine
Director, Adult Pulmonary Diagnostic Unit
Director, Cardiopulmonary Sleep and Ventilatory Disorders Center
Columbia University College of Physicians and Surgeons
Pulmonary Physiology

- Control of Breathing
- Mechanics/Work of Breathing
- Ventilation
- Gas transport (including pulmonary circulation)
- Gas Exchange (including diffusion of gas/gas transfer)
“When you can’t breathe, nothing else matters.”
Control of Breathing

• Keep PCO_2 40 mmHg awake
• Neural Control
• Chemical Control
Neural Control

• Inspiratory inhibition reflex (Hering Breuer)
 – irritant, mechano, j receptors: stimulation in patients with, e.g., interstitial fibrosis, pulmonary embolism, atelectasis

• Stimulation of mechanoreceptors in airways: can cause tachypnea, bronchoconstriction
Chemical control

- CO_2 stimulation
- Hypoxemic stimulation
- H^+ stimulation
Chemical Control: CO₂ stimulation

- Central >> peripheral chemoreceptors
- Chronically elevated PaCO₂ = increased ECF [HCO₃⁻], so acute increase in PaCO₂ will induce less of a change in [H⁺] and therefore less stimulus to ventilation
Chemical Control: Hypoxemic Stimulation

- Peripheral chemoreceptors only
- Low $\text{PaO}_2 \rightarrow$ increased V_E
- The increase in V_E is attenuated by the decreased PaCO_2 that results (see previous slide)
Chemical Control: Hydrogen ion stimulation

- Metabolic acidosis stimulates peripheral chemoreceptors
- Acute metabolic acidemia \rightarrow increased V_E
- Chronic metabolic acidemia \rightarrow attenuated by ↓ PaCO$_2$
Chemical Control of Breathing

- When WOB elevated, PCO$_2$ not as potent a stimulus to breathe
- Sleep depresses ventilatory stimulation; PaCO$_2$ rises by several mmHg in sleep (most in REM sleep)
Mechanical Properties of the Respiratory System

- Lung Compliance
- Chest Wall Compliance
- Airway Resistance

- In disease states, these mechanical properties are altered!!!
Lung Compliance

Compliance = \frac{1}{Elastance} = \frac{\Delta \text{volume}}{\Delta \text{pressure}}

“Hysteresis”
Two determinants of lung compliance

• Elastic properties of lung parenchyma
• Surface tension in alveoli
Elastic Properties of Lung Parenchyma

- Elastic fibers (easily stretched)
 - Elastin
 - Microfibrils
- Fibril forming collagens
 - Tensile strength
 - Types I, II, III, V, XI
- Geometric arrangement
 - “Nylon stocking” elasticity
 - Nylon stocking is easy to stretch
 - Nylon threads are difficult to stretch

Section of human lung showing elastin fibers in alveolar walls surrounding blood vessels.
Surface Tension of Alveolar Lining Fluid

• Surface Tension
 – **Technical definition:** “the force acting across an imaginary line 1 cm long in the surface of the liquid”
 – **Better definition:** the force that minimizes liquid surface area
 – Attractive forces are stronger between two liquid molecules than between gas and liquid molecules
Pulmonary Surfactant decreases Alveolar Surface Tension

- Type II pneumocytes produce surfactant
- Low surface tension = increased compliance
Clinical correlation

• What happens if...
 – the lung has too much interstitial water?
 – the lung has too much collagen?
 – the elastic tissue of the lung is partially destroyed?
 – the lung has too little surfactant?
 – all of the gas is removed from the right lower lobe?
Pressure-Volume Curves

The graph shows the relationship between pressure in cm (H₂O) and the predicted total lung capacity (% predicted TLC) for different conditions:

- **Emphysema**: A dotted line indicating a significant change in the curve, especially at higher pressures.
- **Normal**: A solid line starting from 0% and gradually increasing to about 100%.
- **Interstitial fibrosis**: A solid line that increases more gradually compared to normal conditions.

The graph helps in understanding the effects of these conditions on lung function.
Chest Wall Compliance

- The chest wall is elastic too!

At FRC, chest wall elastic recoil (pulling outward) = lung elastic recoil (pulling inward)
Clinical correlation

• What happens if...
 – There is air in the pleural space?
 – There is too much liquid in the pleural space?
 – The visceral pleural is covered in scar tissue?
Airway Resistance during Laminar Flow

Ohm’s Law

\[\dot{V} = \frac{\Delta P}{R} \]

\[R = \frac{8\eta l}{\pi r^4} \]

V = flow rate
ΔP = driving pressure
r = radius of the tube
η = viscosity
l = length of the tube
Airway Resistance is determined by Airway Caliber

Intraluminal: e.g., Secretions

Intramural: e.g., Edema

Extraluminal: e.g., Loss of radial traction
Application of the Alveolar Ventilation Equation

\[P_{aCO_2} \propto \frac{V_{CO_2}}{V_A} \]

What happens if…
1. Dead space increases (minute ventilation held constant)
2. Minute ventilation increases (\(V_D\) is constant)
3. CO\(_2\) production increases
Gas Transport: Pulmonary Circulation and Diffusion of Gas (Gas Transfer)

• Conduction of blood coming from the tissues through the alveolar capillaries so that O_2 can be added and CO_2 removed.

• Pulmonary vessels=low pressures and low resistance to flow (thin walled)

• Resistance=driving pressure/flow (Q)

• Most resistance in the arterioles and capillaries

• Driving pressure=pressure at the beginning of the pulmonary circulation (the pulmonary artery) and other end (left atrium); normally, eg, blood flow 6 L/min and mean driving pressure of 9 mmHg, resistance is 9mmHg/6 L/min, or 1.5 mmHg/L/min (~10% of systemic pressure).
Gas Transport: Pulmonary Circulation and Diffusion of Gas (Gas Transfer)

- Pulmonary capillary blood volume increases during inspiration and exercise

- Reduced when patients receive mechanical ventilation (intrathoracic pressure is raised, thus impeding venous return to the heart)

- Patients with increased pulmonary pressure (eg pulmonary hypertension, pulmonary embolism) = cardiodynamic consequences as well as disturbance of gas transfer
Diffusing Capacity (Transfer Factor)
Gas Transport: Pulmonary Circulation and Diffusion of Gas (Gas Transfer)

- Transfer of O_2 and CO_2 between alveolar gas and pulmonary capillary blood is entirely passive.

- The rate of diffusion of gas across alveolar-capillary barrier is determined by:
 - solubility of gas in liquid
 - density of gas
 - partial pressure difference between alveolar air and pulmonary capillary blood
 - surface area available for diffusion

- CO$_2$ diffusion not a clinical problem because CO$_2$ much more soluble and diffusible than oxygen between air and blood.

- Total diffusing capacity includes uptake by hemoglobin and rate of flow.
Gas Transport: Pulmonary Circulation and Diffusion of Gas (Gas Transfer)
“Diffusion Capacity” vs Diffusion

• Note that: decreased diffusing capacity/gas transfer abnormality can result from numerous abnormalities not having anything to do with diffusion block itself
“Diffusion Capacity” vs Diffusion

• So when we say diffusion abnormality=cause of hypoxemia, we mean those abnormalities which involve some form of diffusion block, or other inability to transfer gas completely (eg, low PIO₂+ decreased circulatory time) so that insufficient transfer of alveolar PO₂ occur

• Low alveolar volume, low Hgb, may result in low diffusing capacity as measured by transfer of CO, and low O₂ content, but not low PaO₂
Gas Transport: CO$_2$

- CO$_2$ in physical solution: most carried in RBCs either as bicarbonate, or bound to Hgb (carbaminoHgb)
- Some is dissolved in plasma
Gas Transport: Oxygen

- O_2 combined with Hgb in RBCs, and dissolved O_2 in physical solution in the plasma
- Normal: 1 gm of Hgb able to combine chemically with 1.34 ml O_2
- Thus: O_2 capacity = 1.34 ml O_2 /gmHgb
- If 15 gm Hgb/100 ml blood, O_2 capacity = 20 ml O_2 /100 ml blood = 200 ml O_2 /liter blood
- Dissolved O_2 = .003 ml O_2 /100 ml blood/mmHg PaO$_2$
- CaO_2 = SaO_2 x [O$_2$ capacity] + dissolved O_2
- If PaO$_2$ = 100 mmHg, and Hgb = 15, then O_2 content = 200 ml O_2 /liter blood + 3 mlO_2/liter blood = ~203 mlO_2/liter blood x SaO_2
Hypoxemia

• Low partial pressure of O_2 in blood (PaO$_2$) OR low O_2 content
Hypoxia

• Metabolic O₂ deficiency unable to meet tissue demands
• Hypoxia causes are:
 o “stagnant”, as with impaired blood flow; normal PaO₂ and SaO₂
 o “histocytotoxic”, as with metabolic impairment using O₂, such as cyanide poisoning; normal PaO₂ and SaO₂
 o “anemic”, as with low Hgb or carbon monoxide poisoning; normal PaO₂ and SaO₂
 o “hypoxic” or “hypoxemic”, as with impaired oxygenation such as low V/Q, shunt, diffusion block, or low PIO₂ such as high altitude; PaO₂ and SaO₂ decreased
Gas Transport: Pulmonary Circulation and Diffusion of Gas (Gas Transfer)

• Causes of Hypoxemia
 – Hypoventilation
 – Low PiO₂
 – Diffusion abnormality (must be severe if at rest)
 – V/Q mismatch
 – Shunt

• Note that low V/Q does not=shunt

• Degree of O₂ saturation depends on O₂ tension
Below PaO₂ 60 mmHg, O₂ sat and content decrease rapidly
(ie, rapid dissociation and tissue unloading)
- Right shift = decreased O2 affinity (decreased SaO2) for a given PaO2
- (ie, more tissue unloading: increased temp, 2,3 DPG, PCO2, low pH)
- Left shift = increased O2 affinity (increased SaO2) for a given PaO2
- (ie, less tissue unloading: low 2,3 DPG, high CO, low temp, methHgb, fetal Hgb)
Physiologic Causes of Hypoxemia

- **Widening of AaDO\(_2\):**
 - Diffusion Abnormality
 - V/Q mismatch
 - Shunt

- **No widening of AaDO\(_2\):**
 - Hypoventilation
 - Low PIO\(_2\)
 - may contribute to widening if impaired diffusion
Alveolar Gas Equation

\[P_{I}O_{2} = F_{i}O_{2} \times (P_{B} - P_{H_{2}O}) \]

\[P_{A}O_{2} = P_{I}O_{2} - \frac{P_{A}CO_{2}}{R} + \left[P_{A}CO_{2} \times F_{i}O_{2} \times \frac{(1-R)}{R} \right] \]

\[P_{A}O_{2} \approx P_{I}O_{2} - \frac{P_{A}CO_{2}}{R} \]

- R=Respiratory Exchange Ratio: (gas R=CO₂ added to alveolar gas by blood/amount of O₂ removed from alveolar gas by blood; low V/Q=low R); normal=0.8
Two patients breathing room air at sea level:

1. PaO$_2$=40 mmHg, PaCO$_2$=90 mmHg:

2. PaO$_2$=40 mmHg, PaCO$_2$=22 mmHg:

Calculate the Alveolar-arterial PO2 gradient
What is the pulmonary pathophysiology?