Pulmonary Function Tests

Three Types of Pulmonary Function Tests

Spirometry

 Test of "dynamic function"
 Helpful for "obstructive defects"

Lung volume measurement
 Test of "static function"
 Helpful for "restrictive defects"

Diffusion abnormalities
 Helpful to assess gas exchange

Spirometry

PFTs: airflow obstruction

Decrease in expiratory airflow and/or volume
FEV₁ decreased
FVC normal or decreased
FEV₁/FVC decreased*
FEF₂₅₋₇₅ decreased

*definition of obstructive defect

Types of Airflow Obstruction

Intraluminal obstruction
Intramural obstruction
Extraluminal obstruction
Upper airway obstruction
"Mixed"

Types of Airflow Obstruction

Intraluminal: e.g., Secretions **Intramural:** e.g., Edema

Extraluminal: e.g., Loss of radial traction

Dynamic Airway Compression during Forced Expiration

"Upper Airway" Obstruction

PFT Question #1

FEV1/FVC=obstructive ventilatory defect:

 Why is FEV1 itself NOT diagnostic of an obstructive defect?

Patient: ;	ARCAN, BR			id: 48-05	- 554		
Age: 65		Gender: Male	Location: Out-Pt			Date: 🖬	
Height(in): 70		(cm): 179		Temp: 29			
Weight(lb): 204		(kg): 92.5		Physician	THE THE PARTY OF	alassa 7	
mengina	5). 204	(((g)). 52.5					
Spirome	etry	Ref	Pre	Pre	Post	Post	
			Meas	% Ref	Meas	% Ref	
FVC	Liters	4.70	1.93	41	2.71	58	
FEV1	Liters	3.63	0.54	15	0.60	17	
FEV1/FVC	%	77	28		22		
FEF25-75%	%L/sec	2.88	0.25	9	0.24	8	
FEF25%	L/sec	7.80	0.27	3	0.29	4	
FEF50%	L/sec	4.32	0.18	4	0.19	4	
FEF75%	L/sec	1.57 0.10 6		0.09	6		
PEF	L/sec	8.44	2.27	27	2.96	35	
MVV	L/min	134			26	19	
PIF	L/sec	3.67					
FIF50%	L/sec	4.59					
FET100%	Sec		13.02		19.70		
Lung Vo	lumes						
VC	Liters	4,49			2.85	63	
TLC	Liters	6.59			8.66	132	
RV	Liters	2.46			5.81	236	
RV/TLC	%	39			67		
FRC PL	Liters	3.52			7.02	199	
FRC He	Liters	3.52					
Vtg	Liters				6.94		

Lung Volumes

"Static function"
Gas Equilibration ("wash in" and "wash out")
Body plethysmography

Gas Equilibration Lung Volumes

 "Wash in:" Helium (insoluble gas) breathed from a reservoir of known VOLUME and CONCENTRATION, thus diluting its concentration by the volume of the lungs

Gas Equilibration Lung Volumes

"Wash out:" Lung gas (N2) washed out during breathing of 100% O2
Initial N2 concentration known (atmospheric); volume and N2 concentration of expired gas measured

$$V_{FRC} = V_{EXP} X \frac{C_{EXP}}{0.79 - C_{ALV(final)}}$$

Plethysmographic Lung Volumes

Closed system at constant temperature
Lungs and airway closed system when occluded
Panting at FRC
Inhalation → ↓ intrathoracic pressure, ↑ volume

$\mathbf{P}_1 \mathbf{V}_1 = \mathbf{P}_2 \mathbf{V}_2$

At constant temperature

 $P_{FRC} V_{FRC} = (P_{FRC} + \Delta P) (V_{FRC} + \Delta V)$

Plethysmographic Lung Volumes

$$P_{FRC} V_{FRC} = (P_{FRC} + \Delta P)(V_{FRC} + \Delta V)$$
$$= P_{FRC} V_{FRC} + \Delta P V_{FRC} + P_{FRC} \Delta V + \Delta P \Delta V$$
$$0 = \Delta P V_{FRC} + P_{FRC} \Delta V + \Delta P \Delta V$$
$$Close to zero$$
$$V_{FRC} = \frac{\Delta V}{\Delta P} P_{FRC}$$

Plethysmographic Lung Volumes

- △P obtained from change in mouth pressure against occluded valve
- ΔV obtained from change in pressure in the plethysmograph as air in the box is compressed by increase in lung volume

PFRC =alveolar pressure=atmospheric pressure

PFTs: Restrictive ventilatory defect

A decrease in lung expansion
FEV₁ decreased
FVC decreased
FEV₁/FVC normal or increased
Total Lung Capacity (TLC) decreased*

* Definition of restrictive ventilatory defect

PFT Questions #3 and #4

Why is FVC itself NOT diagnostic of a restrictive ventilatory defect?Why is VC itself not diagnostic of a restrictive ventilatory defect?

Types of Restrictive Defects

Parenchymal removal/destruction
Parenchymal infiltration
Extrapulmonary deformity
Reduced force generation

Restrictive patterns

Parenchymal lung disease

thoracic cage restriction
Symmetric decrease in TLC, VC, FRC, RV

Neuromuscular weakness

IC mainly decreased
TLC and VC decreased
FRC and RV spared

New York Presbyterian Hospital

Columbia Presbyterian Medical Center 622 West 168th Street New York, NY 10032

Adult Pulmonary Diagnostic Unit

Detions	- · ·				
Age: Height:	65 in	Gender: (164 cm)	Female Weight:		
Body Ma	ss Ind	ex:			
Spirometry			Ref	Pre	Pre % Ref
FVC FEV1 FEV1/EV(Liter Liter	s	3.51 2.91 82	2.00 1.52 76	57 52
FEF25-75 FEF25%	%L/se	c	3.18	1.21	38 67
FEF50% FEF75%	L/se	6 6	3.77	2.14	57 25
PEF	L/se L/mi	c n	6.25	4.32	69
PIF FIF50% FEF/FIF50 FET100%	L/se L/se	c	4 31 3.95	4.31 4.29 0.50 7.50	100 109
Lung Vo	lume	s			
VC TLC RV RV/TLC	Liter Liter %	s 5 5	3.51 5.14 1.69 33	1.87 2.67 0.80 30	53 52 47

mL/mmHg/min 27.3

mL/mmHg/min 27.3

2.86

2.86

2.86

ID: Location: Physician: Technician:

43

51

51

98

1.23

13.8

13.8

2.58

5.37

Post Post Post Meas % Ref % Chg

52427-E Date:

Temp:

FRC PL

FRC N2

FRC He

DLCO

DL Adj

Diffusion

Vtg

VA

Liters

Liters

Liters

Liters

Liters

DLCO/VA mL/mHg/min/L 5.48

Diffusing Capacity (Transfer Factor)

Diffusing Capacity for CO (DL_{CO})

- DL_{CO} = CO rate of uptake (ml/min)/∆PCO (mmHg)
- O₂ and CO combine with Hgb
 reflects properties of alveolar-capillary membrane
 limited by resistance across this interface
- Soluble gases limited by pulmonary blood flow

Two major resistances

- membrane properties (Dm),
- "reactive" conductance
 - molecular conformation/rate of reaction properties of Hgb binding x pulmonary capillary blood volume (Vc)

Diffusing Capacity for CO (DL_{CO})

$$DL_{CO} = \frac{(kCO)(V_A)}{P_b - P_{H_2O}}$$

- kCO = rate constant for CO uptake (aka "permeability factor" or Krogh coefficient)
- V_A = alveolar volume
- $P_b P_{H20}$ = effective gas pressure (barometric pressure partial pressure of water)
- Units = conductance (ml CO/min/mmHg)

Diffusing Capacity for CO (DL_{CO})

Assumes 100% of alveolar volume was filled with CO

- Influenced by altitude (high altitude decreases PIO₂ and therefore increases DLCO)
- Note that properties of CO uptake are different than those of oxygen
 - CO = diffusion limited
 - O₂ = perfusion limited

Determinants of DL_{CO}

 Gas gradient Solubility Hemoglobin Rate of gas uptake by Hgb Capillary blood volume Alveolar-capillary membrane properties Thickness Surface area

DL_{CO} is measured using the single breath Diffusing Capacity for CO manuever

- Inspirate 0.25% CO, 10% inert gas, 21%O₂, balance N₂
- Expire to RV; inhale rapidly to TLC; hold for remainder of 10 seconds of breath hold time
- Expire; discard anatomic dead space gas; sample 500-1000 ml alveolar gas

Limitation of the single-breath Diffusing Capacity manuever

 SB may UNDERESTIMATE true diffusing capacity in emphysema if it underestimates gas dilution V_A since DLCO =(kcOxVA)/(Pb-PH20)

Causes of Decreased "Measured" Diffusing Capacity

Parenchymal Lung problem
Loss of alveoli

Emphysema
Resection

Abnormal alveoli (rest of the course...)

Pulmonary vascular problem

Pulmonary vascular disease
Pulmonary embolism

Anemia

Abnormal hemoglobin

Causes of Increased "Measured" Diffusing Capacity

Obesity
Alveolar hemorrhage
Asthma (?)
Altitude (?)
Supine position (vs sitting)
Left to right shunt

"Diffusion Capacity" vs Diffusion

 Decreased diffusing capacity can result from numerous abnormalities unrelated to diffusion block itself

Diffusion abnormality as a cause of hypoxemia

- Diffusion block or other inability to transfer gas completely (eg, low PIO2+ increased circulatory time) so that insufficient transfer of alveolar PO₂ occur
- Decreased diffusing capacity without diffusion block
 - Iow alveolar volume,
 - Iow Hgb

New York Presbyterian Hospital

Columbia Presbyterian Medical Center 622 West 168th Street New York, NY 10032

Adult Pulmonary Diagnostic Unit

Detions	- · ·				
Age: Height:	65 in	Gender: (164 cm)	Female Weight:		
Body Ma	ss Ind	ex:			
Spirometry			Ref	Pre	Pre % Ref
FVC FEV1 FEV1/EV(Liter Liter	s	3.51 2.91 82	2.00 1.52 76	57 52
FEF25-75 FEF25%	%L/se	c	3.18	1.21	38 67
FEF50% FEF75%	L/se	6 6	3.77	2.14	57 25
PEF	L/se L/mi	c n	6.25	4.32	69
PIF FIF50% FEF/FIF50 FET100%	L/se L/se	c	4 31 3.95	4.31 4.29 0.50 7.50	100 109
Lung Vo	lume	s			
VC TLC RV RV/TLC	Liter Liter %	s 5 5	3.51 5.14 1.69 33	1.87 2.67 0.80 30	53 52 47

mL/mmHg/min 27.3

mL/mmHg/min 27.3

2.86

2.86

2.86

ID: Location: Physician: Technician:

43

51

51

98

1.23

13.8

13.8

2.58

5.37

Post Post Post Meas % Ref % Chg

52427-E Date:

Temp:

FRC PL

FRC N2

FRC He

DLCO

DL Adj

Diffusion

Vtg

VA

Liters

Liters

Liters

Liters

Liters

DLCO/VA mL/mHg/min/L 5.48

New York Presbyterian Hospital

Columbia Presbyterian Medical Center 622 West 168th Street New York, NY 10032

_

Adult Pulmonary Diagnostic Unit

Patient:					ID:			Date:	
Age:	Gender:	Male			Loc	ation:		Temp:	PBar:
Height:	67 in (169 cm)	Weight:			Phy	sician:			
Body Mass Index:				Tecl	hnician:				
Spirome	try	Ref	Pre	Pre	Post	Post	Post		
			Meas	% Ref	Meas	% Ref	% Chg		
FVC	Liters	4.06	2.73	67	2.92	72	7		
FEV1	Liters	3.17	1.22	38	1.21	38	-1		
FEV1/FVC	96	78	45		41				
FEF25-759	6 L/sec	3.03	0.32	10	0.27	9	-14		
FEF25%	L/sec	7.41	1.27	17	1.06	14	-16		
FEF50%	L/sec	3.57	0.44	12	0.38	11	-13		
FEF75%	L/sec	1.22	0.11	9	0.09	7	-21		
PEF	Usec	7.65	4.52	59	4.11	54	-9		
MVV	L/min	121			52	43			
PIF	L/sec	3.54	3.64	103	4.35	123	19		
FIF50%	L/sec	4.54	3.34	74	3.93	87	18		
FET100%	Sec		15.58		19.81		27		
Lung Vol	lumes								
VC	Liters	4.06			3 10	76			
TLC	Liters	6.32			6.22	98			
RV	Liters	2 20			3.12	142			
RVIC	96	35			50				
FRC PL	Liters	3.29			3.72	113			
FRC N2	Liters	3.29							
FRC He	Liters	3 29							
Vto	Liters	0.20			3.98				
Difficulture									
Dimusion	1								
DLCO	mL/mmHg/min	29.3			11.5	39			
DL Adj	mL/mmHg/min	29.3			11.5	39			
VA	Liters				3.75				
DLCO/VA	mL/mHg/min/L	4.80			3.06	64			

DLCO Pearl

 Isolated DLCO decrease with normal spirometry and volumes Pulmonary vascular disorder Interstitial disorder not yet, or no longer, affecting parenchymal volume Abnormality of Hgb • anemia carboxyHgb methHgb

Pre-operative Pulmonary Assessment: PFTs

- Complications: highest for thoracic and upper abdominal (ie, near the diaphragm)
- All having lung resection, orthopoedic and lower abdominal with lung disease, or smoking
- Age>60 years

Postoperative Pulmonary Risks

- Spirometry: FEV₁ or FVC <70%, FEV₁/FVC<65%
- P_aCO₂>45 mmHg, DLCO<40% in COPD
- None contraindicate

 Lung resection: FEV₁ best for pulmonary reserve and post op complications; post op FEV₁ <30% predicted=increased long term mortality and immediate post op problems

PFT Summary

- Obstructive ventilatory defect: decreased FEV₁/FVC
- Restrictive ventilatory defect: decreased TLC
- Low DLCO: abnormal uptake of gas by Hgb across alveolar capillary membrane: Diffusion determinants= Gas gradient, solubility, hemoglobin, membrane thickness, surface area, alveolar volume, rate of circulatory flow
- Disorders with airway dysequilibrium (eg emphysema): single breath gas dilution will underestimate lung volumes (and ? DLCO)

Series "ATS/ERS TASK FORCE: STANDARDISATION OF LUNG FUNCTION TESTING" Edited by V. Brusasco, R. Crapo and G. Viegi. General considerations for lung function testing

Eur Respir J 2005; 26: 153–161

