Abnormal Ventilation, Abnormal Gas Exchange

Robert C. Basner, MD Associate Professor of Clinical Medicine Director, Adult Pulmonary Diagnostic Unit Director, Cardiopulmonary Sleep and Ventilatory Disorders Center Columbia University College of Physicians and Surgeons

Ventilation and Gas Exchange

- Objective: to achieve adequate tissue oxygenation and remove metabolically produced CO₂.
- Ventilation: concerned with delivery of fresh volume of air to gas exchanging units, and the removal of a sufficient volume of mixed gas out
- Gas Exchange: the ability to move gas across the alveolar-capillary membrane

Ventilation and Gas Exchange

- The failure of either or both results in impaired arterial blood gases and ultimately *respiratory failure*.
- Ventilatory failure: *Hypercapnic respiratory failure*
- Gas exchange failure: *Hypoxemic respiratory failure*
- Hypoxemia is the inevitable result of both

Ventilation

Ventilation = Breathing

• Ventilation is the process of moving gases between the atmosphere and the alveoli

Normal breathing

- **Respiratory rate** = the number of breaths per minute
 - About 12 to 15 per minute
 - Abbreviated RR
- **Tidal volume** = volume of gas inspired in a single breath
 - About 0.5 liters
 - Abbreviated VT
- Minute ventilation = volume of gas inspired per minute = RR x VT
 - About 6 liters per minute
 - Abbreviate V_E

Only Some of the Tidal Volume Reaches Alveoli

Dead Space

• Anatomic Dead Space

- Normal
- About 1ml per lb. body weight (~150 ml)

• Physiologic Dead Space

- Abnormal
- Areas not participating in gas exchange (more later)

Alveolar and Dead Space Ventilation

 $V_T = V_D + V_A$ $V_T \times RR = (V_D \times RR) + (V_A \times RR)$

 $V_E = V_D + V_A$

Volumes and flows

 $\dot{V}_{CO_2} = \dot{V}_A \times F_A CO_2$

$$\dot{V}_{CO_2} = \dot{V}_A \times F_A CO_2 = \dot{V}_A \times \frac{P_A CO_2}{K}$$

 $\dot{V}_{CO_2} = \dot{V}_A \times F_A CO_2 = \dot{V}_A \times \frac{P_A CO_2}{K}$

$$\dot{V}_{CO_2} = \dot{V}_A \times F_A CO_2 = \dot{V}_A \times \frac{P_A CO_2}{K}$$

$$\dot{V_A} = \frac{\dot{V_{CO_2}}}{P_A CO_2} \times K \approx \frac{\dot{V_{CO_2}}}{P_a CO_2} \times K$$

Application of the Alveolar Ventilation Equation

What happens if...

- 1. Dead space increases (minute ventilation held constant)
- 2. Minute ventilation increases (V_D is constant)
- 3. CO₂ production increases

PaCO2 is used to determine alveolar ventilation

- Normal PaCO2 = 37 to 42 mm Hg
- PaCO2 > 42 mm Hg = alveolar <u>hypo</u>ventilation
- PaCO2 < 37 mm HG = alveolar <u>hyperventilation</u>

Hypoventilation

- Hypoventilation
 - Decreased minute ventilation (decreased RR and/or VT)
- Alveolar Hypoventilation
 - Inability to inspire and expire a volume of air/gas sufficient to meet metabolic demands
 - Inability to bring a fresh volume of O₂ with each breath to the gas exchanging unit, and inability to remove CO₂ produced by metabolism
 - Alveolar hypoventilation can only result from one or both of the following:
 - Hypoventilation
 - Increased dead space fraction (dead space/tidal volume ratio)
- Increased P_AO₂ (hypercapnia) indicates the presence of alveolar hypoventilation

Some Causes of Hypoventilation

1,2 Depression of the respiratory center by drugs, injury, tumor, etc.

- 3. Abnormalities of the spinal cord (e.g., following high dislocation)
- 4. Anterior horn cell disease (e.g., poliomyelitis)
- 5. Diseases of the nerves to the respiratory muscles (e.g., Guillain-Barré)
- 6. Diseases of the myoneural junction (e.g., myasthenia gravis)
- 7. Diseases of the respiratory muscles (e.g., muscular dystrophy)
- 8. Thoracic cage abnormalities (e.g., crushed chest)
- 9. Upper airway obstruction (e.g., tracheal compression by the thymoma)

Causes of Alveolar Hypoventilation

- Neuromuscular insufficiency (previous slide)
- Respiratory muscle fatigue
 - A prolonged increase in the work of breathing will lead to respiratory muscle fatigue
 - Common cause of *hypercapneic respiratory failure*
- We will come back to alveolar hypoventilation during our discussion of hypoxemia

Hypoxemia

Definition of Hypoxemia

- Low partial pressure of O₂ in blood (PaO₂)
 OR
- Low O₂ content (CaO₂)

$C_a O_2 = (1.39 \times Hb \times S_a O_2) + (0.003 \times P_a O_2)$

Hypoxemia ≠ Hypoxia

- Hypoxia is metabolic O₂ deficiency
- Hypoxia causes are:
 - "stagnant", as with impaired blood flow;
 - "histocytoxic", as with metabolic impairment using O2, such as cyanide poisoning;
 - "hypoxic", as with impaired oxygenation such as low V/Q, or low PIO2 such as high altitude;
 - "anemic", as with low Hgb or carbon monoxide poisoning

Hypoxemia ≠ Anemia

- Anemia is low hemoglobin
- Low hemoglobin decreases the
 - O₂ carrying capacity of the blood
 - CaO₂

Hypoxemia \neq Low O₂ Delivery

- O₂ delivery depends on
 - $-O_2$ content
 - cardiac output

$$\dot{D}O_2 = C_aO_2 \times CO$$

The Alveolar Gas Equation is used to Characterize the Mechanisms and Severity of Hypoxemia

$$P_I O_2 = F_i O_2 \times (P_B - P_{H_2 O})$$

$$P_{A}O_{2} = P_{I}O_{2} - \frac{P_{A}CO_{2}}{R} + \left[P_{A}CO_{2} \times F_{I}O_{2}x\frac{(1-R)}{R}\right]$$

Alveolar Gas Equation

$$P_A O_2 \approx P_I O_2 - \frac{P_A C O_2}{R} \approx P_I O_2 - \frac{P_a C O_2}{R}$$

- $P_ACO_2 = P_aCO_2$
- R=Respiratory Exchange Ratio: (gas R=CO2 added to alveolar gas by blood/amount of O2 removed from alveolar gas by blood; low V/Q=low R); normal=0.8

AaDO₂ and Hypoxemia

- The difference between predicted P_AO₂ and measured P_aO₂ is called the "alveolar-arterial oxygen gradient" or "A-a gradient", abbreviated AaDO₂
- Normal AaDO₂ ~ 10-15 mmHg in young adult at sea level breathing room air (RA)

Normal AaDO₂ $P_A O_2 = 100$ $P_a O_2 = 90$

$AaDO_2 = 100 - 90 = 10$

Normal $AaDO_2 = 10-15 \text{ mmHg}$ in young adults at sea level breathing RA

Normal AaDO₂

- Room air:
 - $-P_aO_2=90 \text{ mmHg}$
 - $-P_aCO_2=40 \text{ mmHg}$
 - pH=7.40

$$P_I O_2 = F_i O_2 \times (P_B - P_{H_2 O})$$

$$P_I O_2 = 0.21 \times (760 - 47) = 150$$

$$P_A O_2 \approx P_I O_2 - \frac{P_a C O_2}{R}$$
$$P_A O_2 \approx 150 - \frac{40}{0.8} = 100$$

Physiologic Causes of Hypoxemia

• No widening of AaDO₂

- Hypoventilation
- -Low P_IO_2
 - may contribute to widening if impaired diffusion

• Widening of AaDO₂

- V/Q mismatch
- Shunt
- Diffusion Abnormality

Alveolar Hypoventilation

- Increased P_AO₂ (hypercapnia) indicates the presence of alveolar hypoventilation
- Clinical pearls
 - Does not widen the AaDO₂
 - The hypoxemia may be readily ameliorated with supplemental O2

Challenge: Write a proof for this latter statement

Case History
$$P_A O_2 \approx P_I O_2 - \frac{P_a C O_2}{R}$$

- Room air:
 - $-P_aO_2=30 \text{ mmHg}$
 - $-P_aCO_2=90 \text{ mmHg}$
 - pH=7.08

$$P_I O_2 = F_i O_2 \times (P_B - P_{H_2 O})$$

$$P_I O_2 = 0.21 \times (760 - 47) = 150$$

$$P_A O_2 \approx P_I O_2 - \frac{P_a C O_2}{R}$$
$$P_A O_2 \approx 150 - \frac{90}{0.8} = 37.5$$

Case History $P_{A}O_{2} = 37.5$ $P_a O_2 = 30$ $AaDO_{2} = 37.5 - 30 = 7.5$

Normal AaDO₂ = 10-15 mmHg in young adults at sea level breathing RA

PaO₂ and AaDO₂ at altitude

- Patm = 250 mm Hg
- PaCO2 = 18 mm Hg
- R = 1
- Recent data
 - altitude 8400m
 - PaO2=30 mmHg
 - AaDO2 5.4 mmHg
 - wider than expected
 - Grocott et al, NEJM 2009, 360;2: 141

$$\begin{vmatrix} P_I O_2 = F_i O_2 \times (P_B - P_{H_2 O}) \\ P_I O_2 = 0.21 \times (250 - 47) = 43 \end{vmatrix}$$

$$P_A O_2 \approx P_I O_2 - \frac{P_a C O_2}{R}$$
$$P_A O_2 \approx 43 - \frac{18}{1} = 25$$

Case History

- Room air
 - PaO2=70 mm Hg
 - PaCO2=30 mmHg
- No treatment (RA)
 - PaO2=50 mmHg
 - PaCO2=28 mmHg
- What happened?
Case History
$$P_A O_2 \approx P_I O_2 - \frac{P_a C O_2}{R}$$

• Room air

$$P_A O_2 \approx 150 - \frac{30}{0.8} = 112.5$$

- PaO2=70 mm HgPaCO2=30 mmHg
- No treatment (RA)
 - PaO2=50 mmHg
 - PaCO2=28 mmHg
- What happened?

AaDO $_2 = 112.5 - 70 = 42.5$

Case History
$$P_A O_2 \approx P_I O_2 - \frac{P_a C O_2}{R}$$

• Room air

$$P_A O_2 \approx 150 - \frac{30}{0.8} = 112.5$$

- PaO2=70 mm Hg
- PaCO2=30 mmHg
- No treatment (RA)
 - PaO2=50 mmHg
 - PaCO2=28 mmHg
- What happened?

AaDO $_2 = 112.5 - 70 = 42.5$

$$P_A O_2 \approx 150 - \frac{28}{0.8} = 115$$

$$AaDO_{2} = 115 - 50 = 65$$

Physiologic Causes of Hypoxemia

• No widening of AaDO₂

- Hypoventilation
- -Low P_IO_2
 - may contribute to widening if impaired diffusion

• Widening of AaDO₂

- V/Q mismatch
- Shunt
- Diffusion Abnormality

Low V/Q

• Low relationship of V to Q

Some alveoli are "underventilated"

• Low V/Q is <u>NOT</u> low ventilation of <u>all</u> alveoli

- That would be alveolar hypoventilation

Alveolar PO₂ and PCO₂ across various V/Q relationships

O_2 -C O_2 diagram showing a V/Q ratio line

Examples of V/Q mismatch

- Most parenchymal lung diseases cause hypoxemia by altering V/Q matching
- Examples
 - Asthma
 - COPD
 - Pulmonary Fibrosis
 - Pulmonary Edema

Diffusion Abnormality

- Alveolar capillary thickening
 - pulmonary hypertension
 - pulmonary vasculitis
 - pulmonary embolism
- Alveolar destruction (emphysema)
- Alveolar wall thickening
 - pulmonary fibrosis
- Alveolar filling
 - pulmonary edema
 - pneumonia

"Diffusion Capacity" vs Diffusion

- Decreased <u>diffusing capacity</u> can result from numerous abnormalities unrelated to <u>diffusion block</u> itself
- Diffusion abnormality as a cause of hypoxemia
 - Diffusion block or other inability to transfer gas completely (eg, low PIO2+ increased circulatory time) so that insufficient transfer of alveolar PO₂ occur
- Decreased diffusing capacity without diffusion block
 - low alveolar volume,
 - low Hgb

Right to Left Shunt

- V/Q =0
 - NOT low V/Q
- Supplemental O₂ will not raise PaO₂ with large shunt
 - Can be diagnostic at the bedside!
- Clinical examples
 - ARDS
 - Severe pneumonia
 - Cardiogenic pulmonary edema
- May also be cardiogenic R-L shunt
 - ASD, VSD, PDA

- Shunt Fraction (Qs/Qt): Cc'O2-CaO2/Cc'O2-CvO2 (normal <5%)
- Where CaO2 is arterial O2 content;
- Cc'O2 is end capillary oxygen content;
- CvO2 is mixed venous (pulmonary artery) O2 content

94 0 II MS 5. II

O_2 -C O_2 diagram showing a V/Q ratio line

Hypoxemic Respiratory Failure

- Primary deficit=hypoxemia without hypoventilation, until late (?)
- Gas exchange abnormality: shunt, low V/Q, low diffusing capacity, all...
- Widened AaDO₂

SUMMARY

- Hypoventilation: High PaCO₂, Low PaO₂, no widening of AaDO₂
- Gas exchange abnormality: Low PaO₂, normal or low PaCO₂, widened AaDO₂
- Hypoxemia of all hypoventilation and gas exchange abnormalities may be sufficiently overcome by supplemental O₂ unless gas exchange abnormality is *absolute (eg shunt)*

Two patients breathing room air at sea level:

PaO₂=40 mmHg, PaCO₂=90 mmHg:

Severe alveolar hypoventilation; no gas exchange abnormality: ventilate, give oxygen if necessary to prevent severe hypoxemia; find and treat cause (s) of hypoventilation

PaO₂=40 mmHg, PaCO₂=22 mmHg:

Severe gas exchange abnormality: oxygenate; find and treat cause (s) of gas exchange problem (or low PIO2)