Chronic Obstructive Pulmonary Disease (COPD)

COPD: Outline

- Definition
- Etiology
- Epidemiology
- Pathophysiology
- Clinical Presentation
- Diagnosis
- Prevention
- Treatment

COPD: Definition

Chronic airflow obstruction due to chronic bronchitis and/or pulmonary emphysema

COPD: Definition

Chronic airflow obstruction due to chronic bronchitis and/or pulmonary emphysema

COPD is a chronic disease

- Not acute airflow obstruction
 - Bronchitis/bronchiolitis
 - Asthma attack
- Not (completely) reversible
 - Asthma <u>reversible</u> airflow obstruction

COPD: Definition

Chronic airflow obstruction due to chronic bronchitis and/or pulmonary emphysema

Airflow Obstruction

- Definition of airflow obstruction
 - FEV₁/FVC < 0.70
 - aka "obstructive ventilatory defect"
- Alternative definition
 - FEV₁/FVC < "lower limit of normal"</p>

COPD: Definition

Chronic airflow obstruction due to chronic bronchitis and/or pulmonary emphysema

Chronic Bronchitis

- Definition
 - persistent cough and sputum production for at least three months in at least two consecutive years
- Submucosal gland hyperplasia
- Airway edema
- Mucus plugging and airways fibrosis

Types of Airflow Obstruction

Intraluminal:

e.g., Secretions

Intramural: e.g., Edema

Extraluminal: e.g., Loss of radial traction

COPD: Definition

Chronic airflow obstruction due to chronic bronchitis and/or pulmonary emphysema

Pulmonary Emphysema

- Destruction of acinar walls
- Physiologic effects
 - Loss of radial traction on airways
 - Increased lung compliance
- Consequences
 - Hyperinflation
 - Poor lung mechanics

Centrilobular emphsyema

- Smoking-related
- Upper lobe predominant

Panlobular emphsyema

- alpha-1 antitrypsin deficiency
- Lower lobe (basilar) or diffuse

Causes of Airflow Obstruction

- Upper airway obstruction
- Lower airway obstruction
 - COPD
 - Asthma
 - Bronchiectasis (e.g., cystic fibrosis)
 - Large airway obstruction
 - Tumor, stenosis, foreign body aspiration, et al.
 - Bronchiolitis
 - Pulmonary edema
 - Carcinoid syndrome

COPD: Definition

Chronic airflow obstruction due to chronic bronchitis and/or pulmonary emphysema

(Persistent post-bronchodilator FEV₁/FVC < 0.70 not due to diseases other than COPD)

Leading Causes of Death in the US, 2006

COPD Is as Prevalent as Many Other Chronic Diseases Treated in Primary Care

^{*}All About Diabetes. American Diabetes Association Web site. http://www.diabetes.org. 90% to 95% of Americans with diabetes have type 2 diabetes. AHA. *Heart Disease and Stroke Statistics—2004 Update*. Dallas, TX: AHA; 2003.

Frequently asked questions on overweight and obesity. CDC Web site. http://www.cdc.gov/nccdphp/dnpa/obesity/faq.htm#adults.

Percent Change in Age-Adjusted US Death Rates

GOLD. Available at: http://www.goldcopd.org/OtherResourcesItem.asp?I1=2&I2=2&intId=969. Accessed July 13, 2006 (A).

Risk Factors for COPD

Smoking and Lung Function

Lung Function Over Time

Smoking and COPD risk

α1-antitrypsin (AAT) Deficiency

- Autosomal co-dominant disorder caused by mutation in the Case 1 SERPINA1 gene
- Phenotypes classified Control by migration in isoelectric pH gradient from A to Z (slowest Case 2 migration)

AAT alleles

Allele Groups	Examples	Defect
Normal	M X (Glu363Lys)	None
Deficiency	S (Glu264Val) Z (Glu342Lys) M _{malton} (Phe52del)	Intracellular degradation or accumulation
Null	Tyr160X	No mRNA or protein
Dysfunctional	M _{mineral springs} Met358Arg	Defective inhibition of elastase

Stoller JK and Aboussouan LS. Lancet 2005.

AAT genotypes and emphysema risk

		Emphysema
91%	150-350 mg/dL	Background
6%	110-340 mg/dL	Background
3%	90-210 mg/dL	Background
0.1%	100-200 mg/dL	Background
0.1%	75-120 mg/dL	20-50%
0.02%	20-45 mg/dL	80-100%
	6% 3% 0.1% 0.1%	6% 110-340 mg/dL 3% 90-210 mg/dL 0.1% 100-200 mg/dL 0.1% 75-120 mg/dL

α1-antitrypsin Deficiency (AAT)

- 2% of COPD pts have severe A1AD
 - 59,000 Americans
 - Only 10,000 are receiving replacement therapy
- AAT inhibits neutrophil elastase
- Panlobular emphysema
- Younger pts with <u>basilar</u> emphysema
- Can also cause liver disease
- Treatment
 - Intravenous pooled plasma α1-antitrypsin
 - May slow the decline in lung function

Matrix metalloproteinase-12 and COPD risk

Lung Compliance is Increased in Pulmonary Emphysema

Comparison of Lung Volume Parameters

Airway Resistance is determined by Airway <u>Caliber</u>

Intraluminal: e.g., Secretions

Intramural: e.g., Edema

Extraluminal: e.g., Loss of radial traction

Dynamic Airway Compression during Forced Expiration

Gas exchange in COPD

- Mild hypoxemia is common
- Severe hypoxemia is rare
- Mechanisms of hypoxemia
 - Increased V/Q mismatch (MAJOR)
 - Alveolar hypoventilation (minor)
- Shunt and diffusion abnormalities do NOT contribute to hypoxemia in COPD

Abnormal Ventilation in COPD

- Increased dead space ventilation
 - Emphysematous regions are poorly perfused
 - Increased work of breathing
- Alveolar hypoventilation
 - Common (but not universal) in advanced disease
 - Worsens during severe "exacerbations" (acute deterioration often in the setting of acute bronchitis)

Clinical Presentation of COPD

- Millions have early, asymptomatic COPD
- Common symptoms
 - Cough with sputum production (chronic bronchitis)
 - Exertional dyspnea
 - Muscular wasting
- During an exacerbation
 - Change in sputum quantity, color, or consistency
 - Wheezing
 - Increased dyspnea

Physical Exam in COPD

- Early disease = normal exam
- Common findings
 - Increased anteroposterior chest diameter
 - "Barrel chest"
 - Bilaterally diminished breath sounds
 - Muscular wasting
- During an exacerbation
 - Wheezing
 - Rhonchi
 - Cyanosis

COPD VS NORMAL: PA

COPD VS NORMAL: LATERAL

COPD VS NORMAL: CT

Diagnosing COPD

- Clinical presentation
- Airflow obstruction without reversibility
- Exclusion of alternative causes
 - Asthma
 - Bronchiecatasis (e.g., cystic fibrosis)
 - Congestive heart failure
 - Tuberculosis
 - Other causes of airflow obstruction

Spirometry is the BEST test for diagnosis and staging of COPD

Stage	FEV ₁ /FVC	FEV ₁	Other
I: Mild	< 0.70	≥80% predicted	
II: Moderate	< 0.70	50 to 79%	
III: Severe	< 0.70	30 to 49%	$PaO_2 \ge 60 \text{ mm Hg},$ and $PaCO_2 \le 50 \text{ mm Hg}$
IV: Very Severe	< 0.70	30 to 49%	$PaO_2 < 60 \text{ mm Hg}$ or $PaCO_2 > 50 \text{ mm Hg}$
	< 0.70	<30%	

Management by COPD stage

Stage	FEV ₁	Consider
I: Mild	<u>></u> 80%	 Risk factor reduction Influenza/pneumococcal vaccination Short-acting inhaled β2 agonists
II: Moderate	50 to 79%	Long-acting inhaled bronchodilatorsPulmonary rehabilitation
III: Severe	30 to 49%	• Inhaled corticosteroids (if wheezing or repeated exacerbations)
IV: Very Severe	<30%*	Long-term oxygen therapySurgical therapy

Brief Strategies to Help the Patient Willing to Quit Smoking

ASK Identify smokers at every visit

ADVISE Strongly urge all users to quit

ASSESS Determine willingness to quit

ASSIST Aid the patient in quitting

ARRANGE Schedule follow-up contact

Pharmacologic therapies for tobacco cessation

Agent	Usage	6-month abstinence rate
Nicotine replacement		All about 25%
Nicotine polacrilex (gum)	2-4mg piece every 1-2 hrs x 8-12 weeks	
Nicotine lozenges	1-2mg every hour	
Nasal nicotine spray	0.5 mg inh each nostril hourly x 3-6 months	
Nicotine inhaler	6-16 cartridges/day x 3-6 months	
Transdermal nicotine (patch)	16-24hrs/day x 8 weeks	
Oral medication		
Buproprion sustained release	150mg for 3 days, then 300mg daily x up to 6 months	24%
Varenicline	See next slide	33%

Varenicline

- Orally-available partial agonist at the $\alpha 4\beta 2$ subunit of the nicotinic acetylcholine receptor
- Effects
 - Stimulates nicotinic receptor (reduces withdrawal)
 - Block nicotine from binding (reduces reward)
- Increases the odds of quitting three-fold (33% 6-month quit rate)
- Use:
 - 0.5mg daily x 3 days, then 0.5 mg BID for 4 days, then 1mg BID for 11 more weeks.
 - Quit smoking 1 weeks after initiating varenicline
 - Successful quitters at 12 weeks should continue for 12 more weeks
- Side effects: nausea, insomnia, abnormal dreams
- Concerns: ?suicidal thoughts, aggressive/erratic behavior

Suggested approach to smoking cessation

- Use the 5 A's
- Dual approach
 - Counseling
 - Pharmacologic therapy
 - Varenicline most effective
 - May be combined with nicotine replacement
- Tailor therapy to the individual
 - Comorbidities
 - Preferences

Selected Inhaled Medications for COPD

Type of Drug	Drug	Trade Names	
Chart action (C)	Albuterol	Ventolin	
Short-acting β2-	Terbutaline	Brethine	
agonist (SABA)	Pirbuterol	Maxair	
	Levalbuterol	Xopenex	
Long-acting β2- agonist (LABA)	Formoterol	Foradil	
	Arformoterol	Brovana	
	Salmeterol	Serevent	
A setials alise a varia	Ipratropium (short-acting)	Atrovent	
Anticholinergic	Tiotropium (long-acting)	Spiriva	
	Fenoterol/Ipratropium	Duovent	
SABA/Anticholinergic	Albuterol/Ipratropium	Combivent	
	Becolmethasone	Beclovent, Vanceril	
	Budesonide	Pulmicort	
	Fluticasone	Flovent	
Glucocorticoid	Flunisolide	AeroBid	
	Mometasone	Asmanex	
	Triamcinalone	Azmacort	
	Formoterol/Budesonide	Symbicort	
LABA/Glucocorticoid	Salmeterol/Fluticasone	Advair	

^{*}Do <u>not</u> memorize this Table. It is provided for future reference, only

TORCH study: LABAs and ICS improve lung function in COPD

Relative risk of COPD exacerbation: Inhalational treatment vs. placebo

Inhalation treatment	RR (95% CI)	RR	Р	n*
Ipratropium	0.95 (0.78-1.15)		- 0.60	4
Tiotropium	0.84 (0.78-0.90)	•	<0.001	4
LABA	0.87 (0.82-0.93)	•	<0.001	17
Corticosteroids	0.85 (0.75-0.96)		0.01	8
Combined LABA/ corticosteroids	0.77 (0.58-1.01)		0.06	4

Key:

Ipratropium, short acting anticholinergic Tiotropium, long-acting anticholinergic LABA, long-acting β -agonist

n = number of trials

TORCH study: Reduced mortality with combination therapy?

B Death from Any Cause

Side effects of inhaled medications

- β2-agonists
 - Tremor
 - Tachycardiac
 - Hypokalemia
 - Hypoglycemia (rare)
 - LABA: Increased risk of asthma mortality?
- Anti-cholinergics
 - Dry mouth
 - Cardiovascular events? (conflicting evidence)
- Inhaled glucocorticoids
 - Oropharngeal thrush (gargle & rinse to prevent)
 - Cataracts
 - Osteoporosis
 - Increased risk of pneumonia in COPD pts?

Surgical therapy for COPD

- Lung Volume Reduction Surgery (LVRS)
 - Resection of the upper 25% of both lungs
 - Improves lung compliance, symptoms, and outcomes
- Lung transplantation
 - Replacement of one or both lungs with lungs from a deceased donor
 - 50% mortality at 5 years
- Selected candidates only!!