Interstitial Lung Disease

David J. Lederer, MD, MS
Irving Assistant Professor of Clinical Medicine
Division of Pulmonary, Allergy, and Critical Care Medicine
Columbia University College of Physicians and Surgeons
Respiratory System

Causes of Disease

Structural Change

Functional Change

- Respiratory System Mechanics
- Gas Exchange
- Ventilation
- Vascular Changes
Compartments of the Lung

Courtesy Alain Borczuk, MD
Parenchymal Inflammation and Fibrosis

Normal Lung

ILD

Courtesy Alain Borczuk, MD
Overview

- Terminology and classification scheme
- Pathophysiology
- Clinical manifestations
- Pathogenesis
- Management
Alphabet Soup
Terminology

- **Diffuse parenchymal lung disease (DPLD)**

 A group of non-infectious, non-neoplastic lung diseases each characterized by varying degrees of inflammation and/or fibrosis of the parenchyma of both lungs.

- **Interstitial lung disease (ILD)**

 Old term for DPLD – I prefer this term

- **Idiopathic interstitial pneumonias (IIPs)**

 A group of 7 ILDs of unknown cause

- **Idiopathic pulmonary fibrosis (IPF)**

 The most common IIP (full definition to follow)

- **Pulmonary fibrosis**

 Non-specific term denoting bilateral parenchymal fibrosis
Spectrum of ILD

Interstitial Lung Diseases

- ILD of known cause
- Idiopathic interstitial pneumonias (IIPs)
- Granulomatous ILDs (e.g., sarcoidosis)
- Other forms of ILD

Known Causes of ILD

- Drugs (chemotherapy, antibiotics)
 - www.pneumotox.com

- Radiation therapy

- Connective Tissue Diseases
 - Rheumatoid arthritis
 - Systemic sclerosis (scleroderma)
 - Dermatomyositis

- Occupational/Environmental
 - Inorganic antigens (Pneumoconioses)
 - Asbestosis
 - Coal worker’s pneumoconiosis
 - Silicosis
 - Organic antigen (Hypersensitivity Pneumonitis)
Idiopathic Interstitial Pneumonias

Classified by histologic pattern

<table>
<thead>
<tr>
<th>Clinical-Radiologic-Pathologic Diagnosis</th>
<th>Histologic Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idiopathic pulmonary fibrosis (IPF)</td>
<td>Usual interstitial pneumonia (UIP)</td>
</tr>
<tr>
<td>Non-specific interstitial pneumonia (NSIP)</td>
<td>Non-specific interstitial pneumonia</td>
</tr>
<tr>
<td>Cryptogenic organizing pneumonia (COP)**</td>
<td>Organizing pneumonia</td>
</tr>
<tr>
<td>Acute interstitial pneumonia (AIP)</td>
<td>Diffuse alveolar damage (DAD)</td>
</tr>
<tr>
<td>Respiratory bronchiolitis-ILD (RB-ILD)</td>
<td>Respiratory bronchiolitis</td>
</tr>
<tr>
<td>Desquamative interstitial pneumonia (DIP)</td>
<td>Desquamative interstitial pneumonia</td>
</tr>
<tr>
<td>Lymphoid interstitial pneumonia (LIP)</td>
<td>Lymphoid interstitial pneumonia</td>
</tr>
</tbody>
</table>

Formerly known as bronchiolitis obliterans-organizing pneumonia (BOOP)

Usual interstitial pneumonia is the histologic pattern of IPF
Fibroblastic foci are a key histological finding in UIP

Non-specific interstitial pneumonia

Cellular NSIP

Fibrotic NSIP

Cryptogenic Organizing Pneumonia

RB-ILD and DIP are *smoking related diseases*

Selected other ILDs

• Sarcoidosis
• Eosinophilic pneumonias
• Lymphangioleiomyomatosis
• Langerhan’s cell histiocytosis
Related Diseases Involving the Lung Parenchyma

- Alveolar filling diseases
 - Pulmonary edema
 - Acute respiratory distress syndrome (ARDS)
 - Alveolar proteinosis
 - Diffuse alveolar hemorrhage

- Vascular diseases
 - Lymphangitic carcinomatosis
 - Pulmonary vasculitis
Respiratory System Mechanics

Causes of Disease
Structural Change
Functional Change

Gas Exchange
Ventilation
Vascular Changes
Respiratory System Mechanics in ILD

Pressure-Volume Curves

Reduced Lung volumes

West, JB. Pulmonary Pathophysiology: The Essentials, 2008
ILD leads to a *restrictive ventilatory defect*

- Reduced lung volumes
 - Total lung capacity**
 - Forced vital capacity
 - FEV_1

- Typically, no airflow obstruction

Reduced TLC = restrictive ventilatory defect
Gas exchange in ILD

• Hypoxemia is common in ILD

• Causes of hypoxemia in ILD
 – V/Q mismatch (MAJOR)
 – Diffusion abnormality
 • Only plays a role during exercise

• Characteristics of hypoxemia in ILD
 – Worsens as the disease progresses
 – Worsens during exercise
Changes in pulmonary capillary P_{O_2}

West, JB. Pulmonary Pathophysiology: The Essentials, 2008
What about ventilation and vascular changes?

• Alveolar hyperventilation
 – Hypoxemia
 – Abnormal mechanics and load

• Vascular disease is common
 – Intimal hyperplasia
 – Medial hypertrophy
 – Pulmonary hypertension is typically not severe
Clinical Manifestations of ILD
ILDs share many clinical features

Similarities
- Dyspnea
 - progressive
 - exertional
- Cough
 - non-productive
- Bibasilar crackles
- Restrictive ventilatory defect
- Impaired gas exchange
- Abnormal lung imaging

Differences
- Extrapulmonary findings
 - sarcoidosis
 - connective tissue disease
- Pattern on lung CT
- Histopathology
Case
Case

• 54 year old man comes to see you because he has been short of breath for two years
 – First, while mowing his lawn
 – Then, more dyspneic than his wife in the gym
 – Now dyspneic with most activities at home.
• Dry cough (no sputum) and occasional joint pains.
• No wheezing or hemoptysis.
• No fever or chills.
• No chest pain, orthopnea, PND, or edema.
• No rash, visual changes, Raynaud’s phenomenon, dysphagia, or heartburn
Case

- Past medical history
 - Osteoarthritis
 - Hypercholesterolemia

- Past surgical history
 - None

- Medications
 - Simvastatin, multivitamin, acetaminophen

- No known drug allergies
Case

- Family history
 - No lung disease
 - Mother 85 yo – alive and well
 - Father died at 74 with heart failure
 - Sister with ovarian cancer

- Social history
 - Smoked one pack per day for 35 years (35 packyears). Quit 3 years ago
 - No alcohol or drug use
 - No pets, humidifiers, or hot tubs
 - Real estate agent. No military or construction work
Exam

• BP 118/80 mm Hg; pulse 103; RR 28; T 99.7°

• S_pO_2 92% breathing room air.

• No JVD.

• **Rapid, shallow breathing.** Chest symmetric. No accessory muscle use. **Bibasilar crackles** halfway up bilaterally. No wheezes or rhonchi.

• S1, S2 were normal. Regular rhythm. No murmur, rub, or gallop.

• No cyanosis.
New York Presbyterian Hospital
Columbia Presbyterian Medical Center
622 West 168th Street New York, NY 10032

Adult Pulmonary Diagnostic Unit

Patient:
Age: Gender: Male
Height: 68 in (173 cm) Weight: 193 lb (87.5 kg)
Body Mass Index: 29.24

Spirometry

<table>
<thead>
<tr>
<th></th>
<th>Ref</th>
<th>Pre</th>
<th>% Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVC</td>
<td>4.55</td>
<td>2.94</td>
<td>65</td>
</tr>
<tr>
<td>FEV1</td>
<td>3.63</td>
<td>2.30</td>
<td>63</td>
</tr>
<tr>
<td>FEV1/FVC</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEF25-75%L/sec</td>
<td>3.57</td>
<td>2.18</td>
<td>61</td>
</tr>
<tr>
<td>FEF25% L/sec</td>
<td>7.79</td>
<td>6.48</td>
<td>83</td>
</tr>
<tr>
<td>FEF50% L/sec</td>
<td>4.28</td>
<td>3.38</td>
<td>79</td>
</tr>
<tr>
<td>FEF75% L/sec</td>
<td>1.62</td>
<td>0.72</td>
<td>44</td>
</tr>
<tr>
<td>PEF</td>
<td>8.31</td>
<td>7.99</td>
<td>96</td>
</tr>
<tr>
<td>MVV</td>
<td>140</td>
<td>128</td>
<td>92</td>
</tr>
<tr>
<td>PIF</td>
<td>3.85</td>
<td>5.21</td>
<td>136</td>
</tr>
<tr>
<td>FIF50%</td>
<td>4.85</td>
<td>5.08</td>
<td>105</td>
</tr>
<tr>
<td>FET100%</td>
<td></td>
<td>7.26</td>
<td></td>
</tr>
</tbody>
</table>

Lung Volumes

<table>
<thead>
<tr>
<th></th>
<th>Ref</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>VC</td>
<td>4.55</td>
<td>68</td>
</tr>
<tr>
<td>TLC</td>
<td>6.60</td>
<td>68</td>
</tr>
<tr>
<td>RV</td>
<td>2.04</td>
<td>69</td>
</tr>
<tr>
<td>RV/TLC</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>FRC PL</td>
<td>3.37</td>
<td></td>
</tr>
<tr>
<td>FRC N2</td>
<td>3.37</td>
<td>77</td>
</tr>
<tr>
<td>FRC He</td>
<td>3.37</td>
<td></td>
</tr>
<tr>
<td>Vtg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diffusion

<table>
<thead>
<tr>
<th></th>
<th>mL/mmHg/min</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLCO</td>
<td>33.6</td>
<td>10.7</td>
</tr>
<tr>
<td>DL Adj</td>
<td>33.6</td>
<td>10.6</td>
</tr>
<tr>
<td>VA</td>
<td></td>
<td>3.72</td>
</tr>
<tr>
<td>DLCO/VA</td>
<td></td>
<td>5.21</td>
</tr>
</tbody>
</table>

Arterial Blood Gases

<table>
<thead>
<tr>
<th></th>
<th>Sit@12:42</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIO2</td>
<td>%</td>
</tr>
<tr>
<td>pH</td>
<td></td>
</tr>
<tr>
<td>PCO2</td>
<td>mmHg</td>
</tr>
<tr>
<td>PO2</td>
<td>mmHg</td>
</tr>
<tr>
<td>HCO3</td>
<td>meq/L</td>
</tr>
<tr>
<td>Hb</td>
<td>gm/dL</td>
</tr>
<tr>
<td>%HbCO</td>
<td>%</td>
</tr>
<tr>
<td>SaO2</td>
<td>%</td>
</tr>
<tr>
<td>P(A-a)O2</td>
<td>mmHg</td>
</tr>
</tbody>
</table>
Six-minute walk test

- Distance walked: 1778 ft
- Resting SpO₂: 93%
- Exercise SpO₂: 88%
Normal chest CT
Questions

• Why does he have dyspnea?

• What are the mechanisms of hypoxemia in this patient?

• Why did oxyhemoglobin saturation decrease during exercise?

• What’s the diagnosis?
Idiopathic pulmonary fibrosis

- Most common IIP
- Prototypical form of ILD
- Histopathology:
 - usual interstitial pneumonia
- Risk factors:
 - Older age
 - Male gender
 - Cigarette smoking
 - Family history
Epidemiology of IPF

<table>
<thead>
<tr>
<th>Age</th>
<th>Incidence rate (/100,000 PYO)*</th>
<th>Prevalence (/100,000)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>45-54</td>
<td>2.2</td>
<td>4.0</td>
</tr>
<tr>
<td>55-64</td>
<td>14.2</td>
<td>10.0</td>
</tr>
<tr>
<td>65-74</td>
<td>48.6</td>
<td>21.1</td>
</tr>
<tr>
<td>75+</td>
<td>101.9</td>
<td>57.0</td>
</tr>
</tbody>
</table>

*PYO = patient-years of observation

Survival in IPF

Median survival following diagnosis
2.9 years (95% CI 1.9 – 4.1)

Median survival following symptom onset
6.7 years (95% CI 5.5 -7.4)

Proposed Causes of IPF

- Cigarette smoking
- Viral-induced inflammation
- Occult environmental & occupational exposures
- Gastroesophageal reflux
Pathogenesis of IPF

Selman, M. Ann Int Med. 2001
A Role for Telomere Length in IPF

Telomere length is reduced in IPF

Alder JK et.al. PNAS 2008;105:13051-13056
Cronkhite, JT. et al. AJRCCM 2008;178:729-37
Other mediators in IPF

Pathogenesis of IPF

- Inflammation oxidants
- Epithelial apoptosis
- Epithelial-mesenchymal transformation
- Coagulation
- Th2 cytokines
- Angiogenesis
- Fibroblast growth factors
- Bone marrow-derived fibroblasts
- Myofibroblasts

Noble and Homer. AJRCCM 2005:33:113-120
What about other ILDs?

• Injurious triggers
 – Autoimmune mediated inflammation
 – Drug-induced injury
 – Radiation-induced injury
 – Eosinophil degranulation
 – Hypersensitivity reaction
Management of ILD

• Biopsy often required to make a diagnosis
 – Surgical lung biopsy (gold standard)
 – Transbronchial lung biopsy (less useful)

• Oxygen therapy

• Pulmonary rehabilitation
Treatment of ILD

• Avoid lung injury
 – Inhaled agents
 – Offending drug

• Anti-inflammatory therapy
 – Treat underlying inflammatory diseases
 – Trial of corticosteroids for documented parenchymal inflammation
 – Steroid-sparing agents

• Lung transplantation