Acute Respiratory Failure & ARDS

Nina M. Patel, MD
Assistant Clinical Professor of Medicine
Division of Pulmonary, Allergy & Critical Care
Columbia University, College of Physicians & Surgeons
Objectives

- Define respiratory failure & discuss types of respiratory failure
- Brief introduction to mechanical ventilation
- Define ARDS, its epidemiology & basic pathophysiology
- Discuss clinical aspects of ARDS
- Discuss treatment of ARDS
Respiratory Failure

- An inability to adequately oxygenate or ventilate
 - $\text{PaO}_2 < 60 \text{ mm Hg}$
 - $\text{PaCO}_2 > 45 \text{ mm Hg}$
Respiratory Failure

<table>
<thead>
<tr>
<th></th>
<th>Type I</th>
<th>Type II</th>
<th>Type III</th>
<th>Type IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanism</td>
<td>Shunt</td>
<td>Hypoventilation</td>
<td>Atelectasis</td>
<td>Hypoperfusion</td>
</tr>
<tr>
<td>Etiology</td>
<td>Alveolar flooding- low or high pressure pulmonary edema</td>
<td>Increased dead space, decreased minute ventilation</td>
<td>Decreased FRC, Increased closing volume</td>
<td>Decreased mixed venous oxygen</td>
</tr>
<tr>
<td>Clinical Scenario</td>
<td>ARDS, CHF, Pneumonia, Alveolar hemorrhage</td>
<td>Airway Obstruction, Impaired Lung or Chest Wall Compliance, Neuromuscular weakness, Impaired CNS drive</td>
<td>Postoperative, Obesity</td>
<td>Shock, MI</td>
</tr>
</tbody>
</table>

Respiratory Failure - Type I
Acute Hypoxemic Respiratory Failure

- Cardiogenic
 - “High-pressure” edema
- ARDS
 - “Low-pressure”/increased permeability edema
- Focal lung lesions
 - Pneumonia, Contusion
- Alveolar Hemorrhage syndromes
 - Goodpasture’s, Wegener’s disease
- Miscellaneous
Respiratory Failure: Type I

100% FiO2

PAO2 = 650 mm Hg
CcO2 = 22 mL/100 mL

PvO2 = 40 mm Hg
CvO2 = 15 mL/100 mL

PaO2 = 60 mm Hg
CaO2 = 18.5 mL/100 mL
Respiratory Failure- Type I
Starling Equation

\[* J_v = K_f \left[(P_c - P_i) - \sigma (\pi_c - \pi_i) \right] \]

- \(K_f \) = filtration coefficient
- \(P_c \) = hydrostatic capillary pressure
- \(P_i \) = interstitial capillary pressure
- \(\pi_c \) = oncotic capillary pressure
- \(\pi_i \) = oncotic interstitial pressure
- \(\sigma \) = reflection coefficient
Respiratory Failure - Type II

\[\text{Pa}_{\text{CO}_2} = \frac{\dot{V}_{\text{CO}_2} \times k}{\dot{V}_A} \]

- \(\text{Pa CO}_2 \) rises if:
 - CO2 production increases
 - Alveolar ventilation decreases
Strength/ Drive

CNS Drive
Sedation
Metabolic encephalopathy
OHS

NM Transmission Impaired
ALS
Guillain-Barre Syndrome
Paralytic

Muscle Weakness
Malnutrition
Fatigue
Electrolyte
Hypoperfusion

Load

Resistive
Bronchospasm
OSA
Secretions

Lung & Chest Wall Elastic
Pneumonia
Pulmonary Edema
Pleural Effusion
Ascites

Minute Ventilation
Sepsis
Pulmonary Embolism
Metabolic Acidosis
Respiratory Failure - Type II

* PaO2 corrects readily with supplemental oxygen
Respiratory Failure - Type IV

- Hypoperfusion
- Cardiac output “steal”
Objectives

- Define respiratory failure & discuss types of respiratory failure
- Brief introduction to mechanical ventilation
- Define ARDS, its epidemiology & basic pathophysiology
- Discuss clinical aspects of ARDS
- Discuss treatment of ARDS
Indications for Mechanical Ventilation

- Inadequate Oxygenation
- Inadequate Ventilation
- Shock
- Airway Protection
- Elective (e.g. Sx)
Mechanical Ventilation

Preset Volume or Pressure

Inspiration

Expiration

Normal Respiration

Positive Pressure Ventilation
Principles of Mechanical Ventilation

Equation of Motion

- Driving Pressure

\[\text{Resistive load} + \text{Elastic load} = \text{Airways Resistance} + (\text{lung and chest wall}) \]

Elastance
Mechanical Ventilation

- **Ventilation**
 - Volume or Pressure Modes
 - Compliance determines:
 - Alveolar pressure
 - Tidal volume

- **Oxygenation**
 - PEEP & FiO2
Mechanical Ventilation

GOALS
- Maximal Rest
- Meet minute ventilatory requirements
- Patient-Ventilator Synchrony

Avoid
- Respiratory Alkalosis
- Barotrauma/Volutrauma
- Auto-PEEP
Objectives

- Define respiratory failure & discuss types of respiratory failure
- Brief introduction to mechanical ventilation
- Define ARDS, its epidemiology & basic pathophysiology
- Discuss clinical aspects of ARDS
- Discuss treatment of ARDS
ALI & ARDS
Definition

- Acute onset
- Bilateral infiltrates
- PaO$_2$/FiO$_2$
 - < 300 mm Hg for ALI
 - ≤ 200 mm Hg for ARDS
- No evidence of pulmonary venous congestion
 - PCWP ≤ 18 mm Hg

ALI & ARDS
Epidemiology

- 64 to 86.2 cases/100,000 person-years
- ~142,000 - 191,000 annual cases

Risk factors
- EtOH abuse
- Poor nutritional status
- Increased age
- Increased APACHE score

MacCallum NS; Evans TW. *Curr Opin Crit Care* 2005;11(1):43-9
ARDS Causes

Direct
- Pneumonia
- Aspiration
- Inhalational injury (e.g. heroin/crack)
- Lung contusion
- Near-drowning

Indirect
- Sepsis
- Trauma
- Pancreatitis
- Burns
- Air, Amniotic fluid or Fat Emboli
- Drug Reaction
- Transfusion of Blood Products
- D.I.C.

ARDS - Basic Pathophysiology

- Alveolar flooding
 - ↑ permeability alveolar-capillary barrier
 - Endothelial & epithelial injury
 - Surfactant depletion
- Inflammatory injury
 - TNFα, IL1, IL6
- Coagulation abnormalities

Ware LB, Matthay MA. *NEJM* 2000;342(18):1334-1349.
ARDS - Histopathology

Hyaline Membranes
Objectives

- Define respiratory failure & discuss types of respiratory failure
- Brief introduction to mechanical ventilation
- Define ARDS, its epidemiology & basic pathophysiology
- Discuss clinical aspects of ARDS
- Discuss treatment of ARDS
ARDS - Clinical Presentation

- **History:**
 - Acute onset: 4-48 hrs

- **Symptoms:**
 - Tachypnea, Dyspnea

- **Exam**
 - Severe, refractory hypoxemia
 - Diffuse “wet” crackles on lung exam
ARDS - Radiographically

- Bilateral infiltrates
- Consolidation
 - May be patchy
 - Often dependent
- Kerley B lines absent
- +/- pleural effusions & atelectasis
ARDS - Radiographically
ARDS - Differential Diagnosis

- Congestive heart failure
- Diffuse alveolar hemorrhage
- Acute eosinophilic PNA
- Acute interstitial PNA

Less commonly:
- Pulmonary alveolar proteinosis
- Hypersensitivity pneumonitis
- Cryptogenic organizing PNA
ARDS- Dx Evaluation

- Basic Labs (CBC, BMP)
- Chest X-ray
- ECG & Echocardiogram
- Bronchoalveolar lavage
ARDS - Clinical Course

- Exudative Stage
 - Refractory hypoxemia
 - Intrapulmonary shunt
 - Decreased compliance

- Proliferative Stage
 - Increased dead space & V_E
 - Pulmonary HTN

- Resolution

ARDS- Clinical Course

Exudative

Fibroproliferative

Resolution
Objectives

- Define respiratory failure & discuss types of respiratory failure
- Brief introduction to mechanical ventilation
- Define ARDS, its epidemiology & basic pathophysiology
- Discuss clinical aspects of ARDS
- Discuss treatment of ARDS
ARDS- Treatment

Treat the Underlying Cause!!!
ARDS- Treatment

- Maintain “adequate” oxygenation
 - O₂Sat ~ 88-90%
- Avoid “toxic” F₁O₂ exposure
- Lung protective ventilation
ARDS - PEEP & Oxygenation

ARDS - “Volutrauma”

- High-tidal volumes lead to ALI
- “Baby Lungs”

Gatinnoni L, Pesenti A. *Inten Care Med* 2005 31:776-784

ARDS- Low tidal volume ventilation

- 9% reduction in mortality
- Lower IL-6 levels
- > days without nonpulmonary organ failure

ARDS Network. NEJM 2000;342:1301-8
ARDS Mortality & Prognosis

Mortality
- Underlying Dz
- Multiorgan failure
- < often due to refractory hypoxemia

Long-Term Sequelae
- Neurocognitive deficits
- Neuromuscular weakness
- Neuropsychologic effects
- Decreased HRQL

Risk Factors for Death
- Age
- > physiologic severity of illness
- + Shock on admit
- Immunosuppression

Pulmonary Function
- Decreased diffusing capacity
- Obstructive & Restrictive Deficits observed

Thank you
Questions...?