Chronic Kidney Disease (CKD) Stages

• <u>Stage 1</u> GFR > 90 (evidence of renal disease)

• <u>Stage 2</u> GFR 60-89

• <u>Stage 3</u> GFR 30-59

• <u>Stage 4</u> GFR 15-29

• <u>Stage 5</u> GFR <15 (including ESRD)

CHRONIC KIDNEY DISEASE <u>Treatment Options</u>

- Anti-Hypertensives
- Diuretics
- Diabetic control
- Phosphate binders, Calcium, Vitamin D3
- Erythropoietin, Iron
- Sodium Bicarbonate
- A.C.E. Inhibitor, AII Receptor Blocker
- Dietary restrictions
 - Potassium, Sodium, Water, Protein, etc...

END-STAGE RENAL DISEASE <u>Definition</u>

• Irreversible reduction in intrinsic renal function <u>below</u> that which can be compensated for by any adjustments in diet or medications, such that there is <u>continuing accumulation</u> of nitrogenous waste products, sodium, potassium, water, and /or acid, ...leading to intractable clinical illness (uremia).

Causes of End-Stage Renal Disease

• Diabetes	> 40%
• Hypertension	27.2%
• Glomerulonephritis	12.4%
Cystic Diseases	2.9%
• Interstitial Nephritis	2.8%
Collagen Vascular Diseases	2.1%
Obstructive Uropathy	1.9%
	USRDS, 2001

End-Stage Renal Disease

Treatment Options

(Renal Replacement Therapy)

- Dialysis
 - Hemodialysis
 - Peritoneal Dialysis
- Renal Transplantation
 - Cadaver Donor
 - Living Donor

Indications for Renal Replacement Therapy

- Intractable volume overload
- Hyperkalemia
- Anorexia, Nausea, Vomiting, Gastritis
- Lethargy, Seizures, Coma
- Pericarditis
- Bleeding due to platelet dysfunction

<u>Dialysis</u> Basic Principles

- **CONVECTION**

- Movement of solutes across a semi-permeable membrane carried in the bulk movement of water (hydrostatic pressure, "ultrafiltration")

- DIFFUSION

- Movement of solutes across a semi-permeable membrane down their concentration gradient

Hemodialysis vs Peritoneal Dialysis

- Rapid correction of metabolic, fluid imbalance
 - Blood flow 400ml/min
 - Dialysate flow 500 ml/min
- Cardiovascular instability
- Angio-access required
- Three times weekly
- Better clearance of small molecules

- Gradual correction of metabolic, fluid imbalance
 - Dialysate 2L/ 6 hours
 - Blood flow ??
- Respiratory embarrassment
- Peritoneal access
- Daily treatments
- Loss of albumin
- Better clearance of "middle molecules"

Factors determining the clearance of substances by dialysis

- Molecular size
- Protein binding
- Relative concentration (tissue vs blood vs dialysate)
- Membrane characteristics ("pore size")
- Blood flow (Q_B)
- Dialysate flow (Q_D)

Relative Concentrations			
Blood		Dialysate Solution	
Glucose	<	Dextrose	
Na+	=	Na+	
K+	>	K+	
HCO3 -	<	HCO3 -	
Ca++	<	Ca++	
Phos	>>>	Ø	
Urea	>>>	Ø	
Creatinine	>>>	Ø	

"High Intensity" Hemodialysis (Improved Outcomes in Hemodialysis) <u>Variables</u>

- Increased duration
 - Same frequency, longer treatments
 - 3 x /week x 6-8 hours
- Increased frequency
 - Daily short treatments
 - 6-7 x/week x 2-2.5 hours
- Increased frequency and duration
 - Daily (Nocturnal), longer treatments
 - 6-7 nights/week x 8 hours

End-Stage Renal Disease

Treatment Options

(Renal Replacement Therapy)

- Dialysis
 - Hemodialysis
 - Peritoneal Dialysis
- Renal Transplantation
 - <u>Deceased Donor</u>
 - Living Donor

Renal Transplantation

- Single kidney from the donor implanted into the iliac fossa of the recipient.
- Renal artery and vein are anastamosed to the (external) iliac artery and vein, respectively. The ureter is implanted into the bladder.
- The recipients native kidneys are not removed.
- Major barrier to success is immunologic.

Renal Transplantation (2)

- Advantages (vs Dialysis)
 - Better renal function (gfr 40-80 ml/min)
 - No further need for dialysis
 - Complete correction of fluid and electrolyte abnormalities
 - Improved quality of life
 - Improved longevity (for comparable patients)
- Disadvantages
 - "Lifelong" immunosuppression
 - Possible rejection (likely eventual allograft failure)

Renal Transplantation USA - 2005

- 17,000 transplants
 - 55% Deceased Donor
 - 45% Living Donor
 - Living Related Donors
 - Living Un-related donors (spouses, friends)
- Waiting List
 - -70,000

Renal Transplantation Columbia University Medical Center

- 199 Transplants 2005
 - 93 (47%) Deceased Donor
 - 106 (53%) Living <u>Donor</u>
 - 65% Living Related donor
 - 35% Living-Unrelated Donor (Spousal, Friends)

Allograft Immunogenicity

- Major Histocompatibility Complex (MHC) encoded proteins
- HLA antigens
 - <u>Class I</u> (HLA A,B all nucleated cells)
 - <u>Class II</u> (HLA DR APC's, B cells, endothelial cells, renal tubular epithelial cells)

Types of Immunosuppressive Medications Used in Renal Transplantation

- Corticosteroids
 - Prednisone, Methyl-prednisolone
- <u>Lymphocyte Proliferation/Purine Synthesis</u> Inhibitors
 - Mycophenolate mofetil, Azathioprine
- Calcineurin Inhibitors
 - Cyclosporine, Tacrolimus
- mTOR Inhibitors
 - Sirolimus (rapamycin)
- Anti-Lymphocyte Antibodies
 - Polyclonal
 - Monoclonal

Maintenance Immunosuppressive Regimens Triple Therapy Cyclosporine/ + Mycophenolate ± Prednisone Tacrolimus Cyclosporine/ + Sirolimus ± Prednisone Tacrolimus Sirolimus + Mycophenolate ± Prednisone

Current Renal Transplant Survival Rates					
	<u>1 yr</u>	5 yr	10 yr		
• Deceased donor	89 %	66%	50%		
• Living Donor	95 %	79%	65%		
		SRTR 2005 data			

Renal Transplantation Matching Donor and Recipient

- "Essential"
 - ABO Compatibility
 - Negative cross-match
 - Antibodies reactive with Donor HLA:
 (Donor lymphocytes + Recipient serum + Complement--->? Cytolytic antibodies)
- <u>Desirable</u>
 - HLA Compatibility

Survival in ESRD: Dialysis vs. Transplant

Wolfe, et al NEJM, 1999

Survival: Transplant vs Dialysis

Relative mortality risks

Dialysis - Wait List (WL) vs non-Wait List: RR 0.43-0.55

Transplant vs WL Dialysis: (1st 2 wks) RR 2 - 5

Transplant vs WL Dialysis: (146 -377 d) RR 1

Transplant vs WL Dialysis: (long-term) RR 0.26 - 0.41

Wolfe et al, USRDS Database, 1998 ASN

Challenges to Long-Term Success of Renal Transplantation

- Donor Shortage
- Chronic Allograft Nephropathy
 - Long-term progressive deterioration in renal function
- Patient death
 - Cardiovascular disease
 - Complications of Long-term Immunosuppression
 - Malignancy
 - Infection

Chronic Allograft Nephropathy

Immunologic

- HLA mismatch
- Acute rejection episodes
- Prior sensitization (anti-HLA antibodies)
- Inadequate immunosuppression

Non-immunologic

- Donor Organ Quality
 - Number of nephrons
 - Delayed Graft Function/ Ischemia-Reperfusion Injury
- Nephrotoxicity of immunosuppressive drugs
 - Cyclosporine, Tacrolimus
- Hypertension
- Hyperlipidemia
- Hyperfiltration
- (Recurrent/ De Novo Disease)

Future Perspectives in Renal Replacement Therapy

Dialysis

- Improved (more biocompatible) membranes
- Improved measures of dialysis adequacy
- Alternative dialysis schedules
- Portable dialysis
- "Artificial kidney"

Renal Transplantation

- New/Improved Immunosuppressive Agents
- Molecular Diagnosis of Rejection
- Improved Organ Donation Rates
- Xeno-transplantation
- Tissue/Organ Culture
- Tolerance Induction