DISEASES OF THE TUBULES AND INTERSTITIUM

Glen Markowitz, M.D.

Mechanisms of Tubulointerstitial Disease

- 2 general categories:
 - Ischemic/toxic (non-inflammatory)
 - Acute tubular necrosis
 - Inflammatory
 - Tubulointerstitial nephritis
 - Infection, allergic/drug-induced, systemic disease (eg. Sarcoid), etc.
Acute Tubular Necrosis

- Clinical-pathologic entity:
 - Clinical: ARF (#1 cause)
 - Oliguria / anuria
 - Minimal proteinuria & bland sediment
 - Increased FE Na
 - Pathology: tubular epithelial injury
 - Not necrosis

Ischemic ATN

- Occurs in setting of decreased renal blood flow / hypotension
 - Trauma/severe blood loss, CHF, septic shock
- Pathology
 - Gross: P & S
 - Degenerative changes
 - Subsequent regenerative changes
 - Most severe changes in proximal tub and mTAL (makes sense)

Clinical Phases of ATN

- Initiation
 - First 36 hours, dominated by initial event
- Maintenance
 - Up to 3 weeks, oliguric, dialysis required
- Recovery ("diuretic phase")
 - Increasing urine output – often substantial, electrolyte abnormalities
- Prognosis: > 90% recovery if survive initiating event
Nephrotoxic ATN

- Many toxins implicated
 - Heavy metals: Hg, Pb, gold, arsenic, ...
 - Organic solvents: CCl₄, ethylene glycol
 - Therapeutics
 - Antibiotics: gentamicin
 - Antifungals: amphotericin B
 - Chemotherapeutic agents: cisplatin
 - Bisphosphonate: zoledronate
 - Radiation & radiocontrast
 - Pigments: Hgb, Mgb
 - Abnormal levels of physiologic substances
 - Osmotic agents: mannitol

Nephrotoxic ATN

- Similar pathology to ischemic ATN
- Additional, toxin-specific findings:
 - Ethylene glycol
 - Osmotic agents/radiocontrast
 - Light chains
 - Hemoglobin/Myoglobin
- How does GFR decrease?
Tubulointerstitial Diseases

- Predominantly interstitial and tubular
 - secondarily involve glomeruli and vessels
 - low grade proteinuria
- A.K.A. Interstitial Nephritis
- Acute forms
 - inflammation, edema and tubular injury
- Chronic forms
 - inflammation, fibrosis, and atrophy
- Etiology: mainly infection or drug-induced

Drug-Induced Interstitial Nephritis

- Clinical: fever, eosinophilia, rash, & RI
 - Occurs 1-2 weeks following exposure
 - sterile pyuria (with eosinophils)
- Hypersensitivity reaction to drug
 - not dose related
- Resolves within weeks of withdrawal
 - Definitive proof: recurs with re-exposure

Drug-Induced Interstitial Nephritis

- Causative agents:
 - Antibiotics: synthetic penicillins, i.e. methicillin, ampicillin
 - Other antibiotics: i.e. rifampin, sulfonamides, vancomycin
 - NSAIDs
 - Diuretics: i.e. thiazides
 - Phenytoin
 - Others...

Drug-Induced Interstitial Nephritis

- Pathogenesis: cell-mediated hypersensitivity reaction (T’s)
- Pathology
 - interstitial inflammation & edema
 - EOSINOPHLS
 - Tubulitis
 - +/- granulomas
NSAIDs
- Inhibit COX
- Multiple patterns of renal disease
 - Acute interstitial nephritis
 - Acute tubular necrosis
 - Loss of PG vasodilation / precip ATN in the setting of volume depletion
 - Minimal change disease (rarely MG)
 - Papillary necrosis
 - Same nephrotoxicity for Cox-2 inhibitors

Acute Pyelonephritis
- Acute suppurative infection of kidney
- Clinical: back pain, fever, pyuria, +/- RI
 - Urine cultures: confirmation / Ab sensitivity
- Route of infection
 - ascending > hematogenous
 - ascending starts in bladder as UTI (F>M)
 - hematog: septic emboli, bacteremia (F=M)
- Organisms
 - 85% gram negative bacilli (#1 E. coli)
 - fecal flora

Acute Pyelonephritis
- Increased risk of ascending infection in three clinical settings
 - Obstruction: BPH, tumors, pregnancy, neurogenic bladder (DM)
 - Instrumentation
 - Vesicoureteral reflux
 - 50% UTI’s in 1st year of life
 - congenital anomaly: intravesical portion of ureter lacks normal oblique course that prevents reflux

Acute Pyelonephritis
- Gross: normal size, +/- coalescent abscesses
- Micro: severe inflammation, PMN's
 - Microabscesses
 - PMN casts & tubulitis
- Distribution:
 - Ascending: originates near medulla
 - Hematogenous: cortical
Chronic Pyelonephritis

Definition: chronic renal disorder with scarring, inflammation, and deformity of calyces/pelvis (ascending*)

Gross: shrunken
- Irregular, asymmetric broad/flat scars (U*)
- Papillary blunting and calyceal deformity

Micro:
- Disproportionate tubulointerstitial scarring
- Atrophic tubules with colloid casts (*"thyroidization"*)
- Chronic inflammation (not PMN's)

Clinical
- Insidious onset of RI
- +/- HTN, mild proteinuria, decreased urinary concentration, culture neg
- Rarely follows "usual" acute pyelo
- More common with persistent obstruction or VUR
- +/- awareness of acute episodes
- Rx: relieve obstruction / correct VUR, antibiotics as indicated
Voiding cystourethrogram

Vesicoureteral reflux (VUR):
- Congenital
- 50% UTIs < 1 yo
Tubulointerstitial nephritis in systemic disease

- Sjogren’s syndrome
 - Systemic autoimmune disease
 - Frequent overlap with SLE or RA
 - Keratoconjunctivitis (dry eyes)
 - Xerostomia (dry mouth)
- Sarcoidosis
 - Multisystem granulomatous disease
 - Lungs, LNs, less commonly kidneys

Papillary Necrosis

- Obstructive pyelonephritis
- Sickle Cell Anemia
 - medulla leads to sickling
 - sickling leads to medullary ischemia
- Analgesic abuse (phenacetin*)
 - increased risk with combinations
 - direct toxicity and ASA-induced PG deficiency
- Diabetes Mellitus
Cystic Diseases of Kidney

- Simple cysts
 - common post-mortem finding
 - as with all cysts, r/o RCC
- Dialysis-associated renal cysts
- Autosomal Dominant Polycystic kidney disease (mainly adults)
- Autosomal Recessive Polycystic kidney disease (children)

Autosomal Dominant Polycystic Kidney Disease

- Common: 1/500-1/1000 live births
- Genes: Pkd1 on 16p; Pkd2 on 4
- Clinical:
 - typical onset at 20-40 years
 - HTN, RI, hematuria, and pain
 - 10% U.S. ESRD population
- Polycystic liver disease in 40%
- Cerebral artery berry aneurysms

Autosomal Dominant Polycystic Kidney Disease

- Gross: massively enlarged & cystic
- Micro: numerous cysts
 - predominantly distal tubular origin
- Etiology:
 - two-hit hypothesis
 - dysregulated, clonal tubular cell growth
Autosomal Dominant Polycystic Kidney Disease

- Rare
- Perinatal presentation (most)
- Typically rapid progression to ESRD
- Bilateral (like ADPKD)
- Liver involvement in majority
 - liver cysts & bile duct proliferation
 - if survive infancy: congenital hepatic fibrosis (cirrhosis)