The Nephrotic Syndrome

Gerald B Appel, MD Vivette D'Agati, MD

Objectives –Nephrotic Syndrome

- Define the nephrotic syndrome.
- Review the mechanism of proteinuria.
- Discuss the mechanisms of the major manifestations of the NS – edema, hyperlipidemia, thrombotic tendency
- Discuss the clinical features and pathology of major clinical forms of the NS.

The Nephrotic Syndrome

Glomerular Disease associated with heavy albuminuria (> 3-3.5 g/day)

Hypoalbuminemia Edema Hyperlipidemia Thrombotic tendency

Pathogenesis of Nephrotic Edema Hypoalbuminemia: Low oncotic pressure Na and Water retention: High hydrostatic pressure (Starling forces)

Therapy of Edema in NS

- Put pt on low Na+ diet
- Use oral loop diuretics
- Sart w low dose double doses
 - add zaroxolyn
 - +/- high BID doses
- IV diuretics and colloid rarely needed
- Goal is 1-2 # edema loss/ day

Lipiduria and Oval Fat Bodies

Treatment of Hyperlipidemia of the Nephrotic Syndrome

- Select high risk pt (high LDL, low HDL, unlikely to rapidly remit)
- Attempt to induce a remission of the proteinuria (ACEi/ARBs , specific immunosuppressives, etc.)
- Dietary Therapy
- Medical Therapy (statins +)

Treatment Principles

- Treatment of Primary Disease- Often immune modulating medications
- Symptomatic Treatment Diuretics, statins, diet, in some anticoagulation
- Reduction of Proteinuria/Slowing Progression

Reduction of Proteinuria and Slowing Progression

- Blood pressure reduction
- Inhibition of the reninangiotensin-aldosterone axis

- An 8 year old child presents with <u>swelling</u> of his eyes and ankles. He has 4+ <u>proteinuria</u> on urine dipstick
- Other labs:
 - BUN 8 mg/dl
 - Creatinine 0.5 mg/dl
 - Albumin 2.2 g/dl, serum cholesterol 400mg/dL
 - 24 hour urine protein 6.0 g/day (normal <150mg)
- Serologic tests are negative or normal

Synonyms

- Minimal Change Disease
- Nil Disease
- Lipoid Nephrosis
- Childhood Nephrosis

Evidence for Immunologic Derangements in Nil Disease

- Viral infections may precede onset or recrudescences.
- May follow recent immunizations.
- Altered in vitro response to mitogens.
- Circulating lymphocytotoxins.
- Altered lymphocyte subpopulations.
- ↑ HLA B-12
- Association with Hodgkin's Disease and other lymphoproliferative disease

Minimal Change Disease

- 5-10% Adults with NS, >85% children
- Usually sudden onset, hvy proteinuria, and edema
- HBP 30%, Microhem 30 %,+/- Low GFR (volume depletion)
- Pathology: LM-NI, IF-Neg, EM-FFP
- Course : Respond to Strds, Relapse, No RF

Case 1: Treatment and Course

- Prednisone 1mg/kg was started
- Furosemide was prescribed for edema
- 3 weeks later the patient was edema-free.
- Urine dipstick tests for protein were negative.
- Prednisone was tapered and stopped by the third month

- A 19 year old female college student gains 12 pounds and has lower extremity edema. Her physician finds 4+ albuminuria.
- Labs:
 - Creatinine 1.0 mg/dl
 - Albumin is 2.0 g/dl
 - Cholesterol 425 mg/dl
 - 18g proteinuria/day
 - Serologic tests are negative
- Corticosteroid treatment is without improvement.

MCD and FSGS
Separate or related entities?
MCD FSGS

Circulating Factors in MCD and FSGS				
Ref	Source	Biologic Activity	Biochemical Characteristics	
Bakker 1986	Serum or mononuclear cells of MCD	Increases vasc. permeability Binds anionic sites	~ 120 Kd Kallikrein-like	
Koyama 1991	T cell hybridoma from MCD	Causes proteinuria and foot process fusion in rats	60-160 Kd Not an Ig	
Savin 1996	Serum or plasma of FSGS (initial, collapsing, recurrent) and steroid- resistant MCD	Increases glom permeability in vitro	50 Kd Binds protein A Not Ig Not Cationic	
Dantal 1994	Plasma of recurrent FSGS in txp	Causes proteinuria and foot process fusion in rats	< 100,000 Kd Binds protein A Not Ig	

Secondary FSGS due to Adaptive Responses

- Reflux nephropathy
- Renal agenesis (solitary functioning kidney)
- Any Chronic Renal Disease
- Obesity

Focal Segmental Glomerulosclerosis

- Increased frequency > 20% NS Blacks!
- In adults onset 2/3 NS, 1/3 proteinuria
- HBP > 30 %, Microhematuria >30 %, renal dysfunction 50 %
- Predictors of ESRD: hvy prot.,Blks, high creatinine, on BX – int fibrosis & Collapse
- Strds >50% respsond, cytoxan, cyA, MMF
- Recurs 1/3 Txps-

- A 67 year old Caucasian Male develops ankle edema and weight gain.
- Labs:
 - 12 g proteinuria/day
 - GFR normal (creatinine 1.1 mg/dl)
 - Albumin of 1.4 g/dl
 - Cholesterol 635 mg/dl

Conditions Associated with Membranous Glomerulopathy

- Infections
 Hepatitis B, Hepatitis C, secondary and congenital syphilis, malaria, schistosomiasis
- Gold, penicillamine, captopril
- Collagen vascular disease
 SLE, Hashimoto's thyroiditis, Rheumatoid
 Arthritis
- Neoplasia
 Carcinoma (lung, breast, colon, stomach)

Membranous Nephropathy

- The most common etiology of idiopathic nephrotic syndrome in white adults
- Course variable
- Renal survival at 10 y: 65%-85%
- Renal survival at 15 y: 60%
- Spontaneous remission rate: 20%-30%

Treatment of Membranous Nephropathy

- Conservative Therapy
- Corticosteroids
- Alternating Steroids –Cytotoxics
- Cyclosporine
- Mycophenolate
- Anti C5 Ab, Rituximab

Case 3: Post Biopsy Course

- All serologic tests are normal
- Normal Colonoscopy and CT abdomen/chest
- 3 days after admission, he develops a dull back ache and then becomes acutely short of breath.
- Chest X-ray is normal
- ABG: pH=7.45 pCO2=30, pO2 =60 on room air
- CT angiogram is requested

CT angiogram: Abdomen

CT angiogram: Chest

Thrombotic Abnormalities in the Nephrotic Syndrome

Increased coagulation tendency (plat. hyperaggregability, high fibrinogen and fibrinogen-fibrin transfer, decreased fibrinolysis, low anti-thrombin III)

DVT, RVT, pulmonary emboli

Membranous NS greatest risk (up to 35%)

Most RVT asymptomatic , but flank pain, microhematuria, low GFR

- A 38 year AA female has had Type 1 diabetes since the age of 19.
- She has severe retinopathy and multiple admissions for labile blood sugars.
- Her internist refers her for proteinuria which has gone up from 200mg/day to 3.2 grams. Her serum creatinine is 1.5mg/dL
- She has experienced a 22 pound weight gain and pitting edema to her thighs.
- She is on twice/daily insulin and Diltiazem

Types of Diabetes Mellitus

- Type I Insulin Dependent (hypoinsulinemic, ketotic, juvenile onset)
- Type II Non-Insulin Dependent (Normoinsulinemic, non-ketotic, maturity onset)

Basement Membrane Thickening in Diabetes Mellitus

Vascular BM

- Glomerular Capillaries
- Muscle Capillaries
- Retinal Capillaries
- Arterioles

Other BM

- Renal Tubules
- Mammary Ducts
- Schwann Cells

Stages of Diabetic Renal Disease Type 1 Diabetes Stage 1 Hyperfiltration Stage 2 Clinically silent Stage 3 (AER: 20-200ug/min) Incipient Nephropathy Stage 4 Overt Nephropathy Stage 5 ESRD

Progression of Diabetic Nephropathy Microalbuminuria Proteinuria ESRD Early stage Late stage End stage

Current Strategies to Limit Renal Injury in Diabetic Nephropathy Blood pressure reduction Inhibition of the renin-

- angiotensin-aldosterone axis
- Blood sugar controlMetabolic manipulation

Blood Pressure Targets Clinical Status BP Goal Hypertension <140/90 mmHg (no diabetes or renal disease) (JNC 7) <130/80 mmHg Diabetes Mellitus (ADA, JNC 7) Renal Disease <130/80 mmHg <125/75 mmHg with proteinuria >1 gram/day or diabetic kidney disease (NKF)

Case 4:Follow up				
■ Symptomatic ■ Furosemide 80mg + Metolazone 5mg				
■ Pravastatin 40mg				
Reduction of Proteinuria				
■ Ramipril 10mg+ Candesartan 16mg/day				
 Edema improved and proteinuria decreased to 200mg/day 				
Her GFR however gradually deteriorated				
over 6 years and she is on hemodialysis awaiting a kidney transplant.				

- A 66 y o housewife with severe rheumatoid arthritis for 22 years develops edema. She is currently taking no medications.
- Labs:
 - 9 g proteinuria/day
 - Serum creatinine 1.2mg/day
 - Serologic tests are negative
 - Creatinine clearance of 100 cc/min

Amyloid

- LM: A homogenous, hyaline eosinophilic proteinaceous substance.
 - Special Stains:
 - Congo Red
 - Methyl VioletThioflavin t
- EM:
 - Fibrillar Constituent
 - Random arrays of non-branching fibrils, 80-100Å in width, beading with 55Å periodicity
 - Non-Fibrillar Constituents
 - Pentameric discs (AP protein)
- X-ray Diffraction: beta pleated sheet conformation

Amyloidosis Precursor Cause **Type Protein** 1. Dysproteinemias Primary "AL" Light chains 2. Longstanding inflammatory or SAA-protein (acute phase Secondary "AA" infectious states reactant)

Chronic Diseases Associated with "AA" Amyloidosis

- Tuberculosis
- Leprosy
- Chronic Osteomyelitis
- Paraplegia
- Chronic bronchiectasis
- Cystic Fibrosis
- Chronic Heroin Addiction
- Rheumatoid Arthritis
- **Psoriasis**
- Familial Mediterranean Fever

Case 5: follow up

- Symptomatic treatment
 - HCTZ 25mg qd
- Reduction of proteinuria
 - Lisinopril 10mg/day
- Rheumatoid Arthritis
 - Anti TNF therapy

Conclusions

- Glomerular disease due to theNephrotic Syndrome (nephrosis) is a common cause of renal disease.
- A renal biopsy and good nephropathologist are essential in diagnosis
- Treatment includes BP control, use of ACE-inhibitors in addition to specific and symptomatic therapy.

The End (Et Cetera!)