The Nephrotic Syndrome





### **Objectives** – Nephrotic Syndrome

- Define the nephrotic syndrome.
- Review the mechanism of proteinuria.
- Discuss the mechanisms of the major manifestations of the NS – edema, hyperlipidemia, thrombotic tendency
- Discuss the clinical features and pathology of major clinical forms of the NS.

### **The Nephrotic Syndrome**

Glomerular Disease associated with heavy albuminuria ( > 3-3.5 g/day )

Hypoalbuminemia Edema Hyperlipidemia Thrombotic tendency

## **Genesis of Hypoalbuminemia**





# Pathogenesis of Nephrotic Edema



Hypoalbuminemia:
Low oncotic pressure
Na and Water
retention:
High hydrostatic pressure

### **Pathogenesis of Edema**



### **Pathogenesis of Edema**



### **Pathogenesis of Edema**



### **Therapy of Edema in NS**

- Put pt on low Na+ diet
- Use oral loop diuretics
- Start w low dose double doses
  - add zaroxolyn
  - +/- high BID doses
- IV diuretics and colloid rarely needed
- Goal is 1-2 # edema loss/ day

### **Lipiduria and Oval Fat Bodies**



### **Total Cholesterol Levels in 100 Consecutive Nephrotic Synd. Pts**



### LDL Cholesterol Levels in 100 Consecutive Nephrotic Synd. Pts



### Treatment of Hyperlipidemia of the Nephrotic Syndrome

- Select high risk pt ( high LDL, low HDL, unlikely to rapidly remit )
- Attempt to induce a remission of the proteinuria (ACEi/ARBs, specific immunosuppressives, etc.)
- Dietary Therapy
- Medical Therapy (statins +)



### **Treatment Principles**

Treatment of Primary Disease- Often immune modulating medications

Symptomatic Treatment – Diuretics, statins, diet, in some anticoagulation

Reduction of Proteinuria/Slowing Progression

# Reduction of Proteinuria and Slowing Progression

Blood pressure reduction

Inhibition of the reninangiotensin-aldosterone axis Meta Analysis: Lower Mean BP Results in Slower Rates of Decline in GFR in Diabetics and Non-Diabetics



Bakris GL, et al. Am J Kidney Dis. 2000;36(3):646-661.

### ACE-I Is More Renoprotective than Conventional Therapy in Type 1 Diabetes



Lewis EJ, et al. N Engl J Med. 1993; 329(20): 1456-1462.

### The Effect of ACE-I on Diabetic Nephropathy: The Collaborative Study Group



# Case 1 – 8 year old child



## Case 1

An 8 year old child presents with <u>swelling</u> of his eyes and ankles. He has 4+ proteinuria on urine dipstick

#### Other labs:

- BUN 8 mg/dl
- Creatinine 0.5 mg/dl
- Albumin 2.2 g/dl, serum cholesterol 400mg/dL
- 24 hour urine protein 6.0 g/day (normal <150mg)</li>
- Serologic tests are negative or normal



















# **Synonyms**

- Minimal Change Disease
- Nil Disease
- Lipoid Nephrosis
- Childhood Nephrosis

# Evidence for Immunologic Derangements in Nil Disease

- Viral infections may precede onset or recrudescences.
- May follow recent immunizations.
- Altered in vitro response to mitogens.
- Circulating lymphocytotoxins.
- Association with Hodgkin's Disease and other lymphoproliferative disease

### Animal Model Puromycin Aminonucleoside Nephrosis



# Minimal Change Disease

- 5-10% Adults with NS, >85% children
- Usually sudden onset, heavy proteinuria, and edema
- HBP 30%, Microhem 30 %,+/- Low GFR (volume depletion)
- Pathology: LM-Normal, IF-Neg, EM-FPF
- Course : Respond to Steroids, Relapse, No RF

### **Case 1: Treatment and Course**

- Prednisone 1mg/kg was started
- Furosemide was prescribed for edema
- 3 weeks later the patient was edema-free.
- Urine dipstick tests for protein were negative.
- Prednisone was tapered and stopped by the third month
### Case 2

- A 19 year old female college student gains 12 pounds and has lower extremity edema. Her physician finds 4+ albuminuria.
- Labs:
  - Creatinine 1.0 mg/dl
  - Albumin is 2.0 g/dl
  - Cholesterol 425 mg/dl
  - 18g proteinuria/day
  - Serologic tests are negative
- Corticosteroid treatment is without improvement.















## **MCD and FSGS**

#### Separate or related entities?



## **Circulating Factors in MCD and FSGS:**

| Ref                        | Source                                                                                             | <b>Biologic Activity</b>                                 | Biochemical<br>Characteristics                     |
|----------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------|
| Bakker<br>1986             | Serum or<br>mononuclear<br>cells of MCD                                                            | Increases vasc.<br>permeability<br>Binds anionic sites   | ~ 120 Kd<br>Kallikrein-like                        |
| Koyama<br>1991             | T cell hybridoma<br>from MCD                                                                       | Causes proteinuria<br>and foot process<br>fusion in rats | 60-160 Kd<br>Not an Ig                             |
| <mark>Savin</mark><br>1996 | Serum or plasma<br>of FSGS<br>(initial, collapsing,<br>recurrent)<br>and steroid-<br>resistant MCD | Increases glom<br>permeability<br>in vitro               | 50 Kd<br>Binds protein A<br>Not Ig<br>Not Cationic |
| Dantal<br>1994             | Plasma of recurrent<br>FSGS in txp                                                                 | Causes proteinuria<br>and foot process<br>fusion in rats | < 100,000 Kd<br>Binds protein A<br>Not Ig          |



Secondary FSGS due to Adaptive Responses

- Reflux nephropathy
- Renal agenesis (solitary functioning kidney)
- Any Chronic Renal Disease
- Obesity



# **Obesity-Glomerular "Stress"**



... AND YOU THINK YOU HAVE STRESS..











#### Pathogenetic Factors (Known and Hypothetical) in FSGS



## Focal Segmental Glomerulosclerosis

- Increased frequency > 20% NS Blacks!
- In adults onset 2/3 NS, 1/3 proteinuria
- HBP > 30 %, Microhematuria >30 %, renal dysfunction 50 %
- Predictors of ESRD: hvy prot.,Blks, high creatinine, on BX – int fibrosis & Collapse
- Strds >50% respsond, cytoxan, cyA, MMF
- Recurs 1/3 Txps-

### Case 3

- A 67 year old Caucasian Male develops ankle edema and weight gain.
- Labs:
  - 12 g proteinuria/day
  - GFR normal (creatinine 1.1 mg/dl)
  - Albumin of 1.4 g/dl
  - Cholesterol 635 mg/dl















## Conditions Associated with Membranous Glomerulopathy

Infections

Hepatitis B, Hepatitis C, secondary and congenital syphilis, malaria, schistosomiasis

Drugs

Gold, penicillamine, captopril

- Collagen vascular disease
  SLE, Hashimoto's thyroiditis, Rheumatoid
  Arthritis
- Neoplasia

Carcinoma (lung, breast, colon, stomach)

# **GENERATION OF HEYMANN NEPHRITIS**

SERUM

FX1A (fractioned material from renal cortex)

ACTIVE HEYMANN NEPHRITIS

RAT

PASSIVE HEYMANN NEPHRITIS

RAT





#### CONSEQUENCES OF IMMUNE DEPOSIT FORMATION

BINDING OF COMPLEMENT



ACTIVATION OF GVEC Scavenging of C5b-9 Increased expression of cytochrome b<sub>558</sub>

FORMATION OF REACTIVEDEPOSITION OF ROS IN<br/>OXIGEN SPECIES (ROS)OXIGEN SPECIES (ROS)GBM

PROTEINURIA

Discovery of the Target Antigen in Human Membranous Glomerulopathy!!!! (Salant et al. NEJM 2009)

 PHOSPHOLIPASE A2 RECEPTOR (PLA2R)

Antibody to PLA2R has been eluted from glomerular deposits of human MGN Antibody to PLA2R is detected in serum of 70% of patients with primary MGN

### **Membranous Nephropathy**

- The most common etiology of nephrotic syndrome in white adults
- Course variable
- Renal survival at 10 y: 65%-85%
- Renal survival at 15 y: 60%
- Spontaneous remission rate: 20%-30%
Treatment of Membranous Nephropathy

- Conservative Therapy
- Corticosteroids
- Alternating Steroids –Cytotoxics
- Cyclosporine
- Mycophenolate
- Anti C5 Ab, Rituximab

## **Case 3: Post Biopsy Course**

- All serologic tests are normal
- Normal Colonoscopy and CT abdomen/chest
- 3 days after admission, he develops a dull back ache and then becomes acutely short of breath.
- Chest X-ray is normal
- ABG: pH=7.45 pCO2=30, pO2 =60 on room air
- CT angiogram is requested

# CT angiogram: Abdomen



# CT angiogram: Chest





## Thrombotic Abnormalities in the Nephrotic Syndrome

Increased coagulation tendency ( plat. hyperaggregability, high fibrinogen and fibrinogen-fibrin transfer, decreased fibrinolysis, low anti-thrombin III )

DVT, RVT, pulmonary emboli

Membranous NS greatest risk (up to 35%)

Most RVT asymptomatic, but flank pain, microhematuria, low GFR







### Case 4

- A 38 year AA female has had Type 1 diabetes since the age of 19.
- She has severe retinopathy and multiple admissions for labile blood sugars.
- Her internist refers her for proteinuria which has gone up from 200mg/day to 3.2 grams. Her serum creatinine is 1.5mg/dL
- She has experienced a 22 pound weight gain and pitting edema to her thighs.
- She is on twice/daily insulin and Diltiazem

## **Case 4: Physical Exam**



## Case 4: Opthalmologic Exam

















# **Types of Diabetes Mellitus**

- Type I Insulin Dependent (hypoinsulinemic, ketotic, juvenile onset)
- Type II Non-Insulin Dependent (Normoinsulinemic, non-ketotic, maturity onset)

# MUTATION:SURVIVE FAMINETHEN:ADEQUATE FOODTODAY:SUPERABUNDANT FOOD



## Basement Membrane Thickening in Diabetes Mellitus

#### Vascular BM

- Glomerular
  Capillaries
- Muscle Capillaries
- Retinal Capillaries
- Arterioles

#### Other BM

- Renal Tubules
- Mammary Ducts
- Schwann Cells

#### **Diabetic Nephropathy**







## Stages of Diabetic Renal Disease Type 1 Diabetes

Stage 1

Hyperfiltration

- Stage 2
  Clinically silent
- Stage 3 (AER: 20-200ug/min) Incipient Nephropathy
- Stage 4
  Overt Nephror
  - **Overt Nephropathy**
- Stage 5
  ESRD





## Progression of Diabetic Nephropathy



Current Strategies to Limit Renal Injury in Diabetic Nephropathy

- Blood pressure reduction
- Inhibition of the reninangiotensin-aldosterone axis
- Blood sugar control
- Metabolic manipulation

# **Blood Pressure Targets**

| Clinical Status                | BP Goal                      |
|--------------------------------|------------------------------|
| Hypertension                   | <140/90 mmHg                 |
| (no diabetes or renal disease) | (JNC 7)                      |
| Diabetes Mellitus              | <130/80 mmHg<br>(ADA, JNC 7) |
| Renal Disease                  | <130/80 mmHg                 |
| with proteinuria >1 gram/day   | <125/75 mmHg                 |
| or diabetic kidney disease     | (NKF)                        |

## Case 4:Follow up

- Symptomatic
  - Furosemide 80mg + Metolazone 5mg
  - Pravastatin 40mg
- Reduction of Proteinuria
  - Ramipril 10mg+ Candesartan 16mg/day
- Edema improved and proteinuria decreased to 200mg/day
- Her GFR however gradually deteriorated over 6 years and she is on hemodialysis awaiting a kidney transplant.

## Case 5

- A 66 y o housewife with severe rheumatoid arthritis for 22 years develops edema. She is currently taking no medications.
- Labs:
  - 9 g proteinuria/day
  - Serum creatinine 1.2mg/day
  - Serologic tests are negative
  - Creatinine clearance of 100 cc/min

## **Rheumatoid Hands**














# Amyloid

- LM: A homogenous, hyaline eosinophilic proteinaceous substance.
  - Special Stains:
    - Congo Red
    - Methyl Violet
    - Thioflavin t

- EM:
  - Fibrillar Constituent
    - Random arrays of non-branching fibrils, 80-100Å in width, beading with 55Å periodicity
  - Non-Fibrillar Constituents
    - Pentameric discs (AP protein)
- X-ray Diffraction: beta pleated sheet conformation

## Amyloidosis

| Cause                                                   | Туре              | Precursor<br>Protein                     |
|---------------------------------------------------------|-------------------|------------------------------------------|
| 1. Dysproteinemias                                      | Primary<br>"AL"   | Light chains                             |
| 2. Longstanding<br>inflammatory or<br>infectious states | Secondary<br>"AA" | SAA-protein<br>(acute phase<br>reactant) |

Chronic Diseases Associated with "AA" Amyloidosis

- Tuberculosis
- Leprosy
- Chronic
  Osteomyelitis
- Paraplegia
- Chronic bronchiectasis
- Cystic Fibrosis

- Chronic Heroin
  Addiction
- Rheumatoid Arthritis
- Psoriasis
- Familial Mediterranean Fever





### Case 5: follow up

- Symptomatic treatment
  - HCTZ 25mg qd
- Reduction of proteinuria
  - Lisinopril 10mg/day
- Rheumatoid Arthritis
  - Anti TNF therapy

#### Conclusions

Glomerular disease due to theNephrotic Syndrome (nephrosis) is a common cause of renal disease.

 A renal biopsy and good nephropathologist are essential in diagnosis

 Treatment includes BP control, use of ACE-inhibitors in addition to specific and symptomatic therapy.



# The End (Et Cetera!)