LABORATORY DIAGNOSIS OF BLEEDING DISORDERS

CIRCULATORY SYSTEM
- Low volume, high pressure system
- Efficient for nutrient delivery to tissues
- Prone to leakage 2° to endothelial surface damage
- Small volume loss → large decrease in nutrient delivery
- Minimal extravasation in critical areas → irreparable damage/death of organism

HEMOSTATIC DISORDERS
- History critical to assessment of presence of disorder
 - History of bleeding problems in the family
 - History of spontaneous bleeding
 - History of heavy menses
 - History of easy bruising
 - History of prior blood transfusion
 - History of prior tooth extractions
 - History of prior surgery/pregnancy
- Physical exam rarely useful except for petechiae or severe hemophilic arthropathy
- Laboratory essential for determining specific defect & monitoring effects of therapy

HEMOSTASIS
Primary vs. Secondary vs. Tertiary
- Primary Hemostasis
 - Platelet Plug Formation
 - Dependent on normal platelet number & function
- Secondary Hemostasis
 - Activation of Clotting Cascade → Deposition & Stabilization of Fibrin
- Tertiary Hemostasis
 - Dissolution of Fibrin Clot
 - Dependent on Plasminogen Activation

COAGULATION TESTING
Basic Testing
- Prothrombin Time
- Activated partial thromboplastin time (aPTT)
- Thrombin Time (Thrombin added to plasma, & time to clot measured)
- Fibrinogen
- Platelet Count
- Bleeding Time

PLATELETS
- Anucleate cellular fragments
 - Multiple granules, multiple organelles
- Synthesis controlled by IL-6, IL-3, IL-11, & thrombopoietin
- Circulate as inactive, non-binding concave discs
- On stimulation, undergo major shape change
- Develop receptors for clotting factors
- Develop ability to bind to each other & subendothelium
PLATELET DYSFUNCTION

Clinical Features
- Mucosal bleeding common
- Often see diffuse oozing
- Often suspected as a diagnosis of exclusion - ie clotting studies normal, but patient has clinical bleeding disorder
- #1 cause of bleeding disorder post-bypass surgery

PLATELET FUNCTION STUDIES
- Bleeding Time
- Platelet Count
- Platelet aggregation studies

BLEEDING TIME
- Bioassay
- Difficult to standardize
- Most reproducible measure of platelet function

BLEEDING TIME vs. PLATELET COUNT

PLATELET FUNCTION DEFECTS
Prolonged Bleeding Time
- Congenital
- Drugs
- Alcohol
- Uremia
- Hyperglobulinemias
- Fibrin/fibrinogen split products
- Thrombocytemia
- Cardiac Surgery
PLATELET AGGREGATION STUDIES
- Multiple agonists used (ADP, epinephrine, collagen, ristocetin)
- Add agonists to platelet rich plasma, then measure increase in light transmission as platelets aggregate
- Difficult to standardize
- Useful for determining cause of platelet dysfunction

PLATELET FUNCTION DEFECTS
Congenital
- Bernard-Soulier disease (Decreased platelet adhesion)
- Glanzmann’s thrombasthenia (Decreased platelet aggregation)
- γ or δ-storage pool disease (Defective platelet release)
- Gray platelet syndrome (Defective platelet release)
- Von Willebrand Disease

PLATELET FUNCTION DEFECTS
Treatment
- Attention to drugs
- Platelet transfusion - for bleeding or pre-procedure, esp with congenital defects
- Desmopressin (DDAVP) - Shortens bleeding time; ? if decreases bleeding.
- Causes release of vWF from endothelial cells
- Cryoprecipitate-Same as DDAVP
- Dialysis
- ? RBC transfusion

THROMBOCYTOPENIA
Causes-Miscellaneous
- Factitious
 - Macroplatelets
 - Platelet aggregation
 - Platelet satellitism
- Splenic sequestration
- Hemodilution

THROMBOCYTOPENIA
Decreased production
- Decreased megakaryocytes
 - Normal platelet life span
 - Good response to platelet transfusion
- Neoplastic Causes
 - Leukemias
 - Aplastic Anemia
 - Metastatic Carcinoma
 - Drugs
 - Radiotherapy
- Primary Marrow Disorders
 - Megaloblastic Anemias
 - Myelodysplastic syndromes
 - Myeloproliferative diseases
 - Some congenital syndromes

THROMBOCYTOPENIA
Increased Destruction - Causes
- Increased megakaryocytes
 - Shortened platelet life span
 - Macroplatelets
 - Poor response to platelet transfusion
- Causes
 - Immune
 - ITP
 - Lymphoma
 - Lupus/rheumatic diseases
 - Drugs
 - Consumption
 - Disseminated intravascular coagulation
 - Thrombotic thrombocytopenic purpura
 - Hemolytic/uremic syndrome
 - Septicemia
COAGULATION CASCADE

General Features

- Zymogens converted to enzymes by limited proteolysis
- Complex formation requiring calcium, phospholipid surface, cofactors
- Thrombin converts fibrinogen to fibrin monomer
- Fibrin monomer crosslinked to fibrin
- Forms "glue" for platelet plug

COAGULATION CASCADE

Prothrombin Time (PT)

EXTRINSIC PATHWAY

- FXI → FIXa
- FIXa → FXa
- FXa → FVIIa
- FVIIa → thrombin

INTRINSIC PATHWAY

- FXII → FXIIa
- FXIIa + calcium + phospholipid surface
- activation complexes

CLOTTING FACTOR DEFICIENCY

Determination of missing factor

- Done only if one of screening tests is abnormal
- Run panel of assays corresponding to the abnormal screening test, using factor deficient plasmas
 - PT abnormal - Factors II, V, VII, X
 - aPTT abnormal - Factors XII, XI, IX, VIII

COAGULATION CASCADE

EXTRINSIC PATHWAY

- FXI → FIXa
- FIXa → FXa
- FXa → FVIIa
- FVIIa → thrombin

INTRINSIC PATHWAY

- FXII → FXIIa
- FXIIa + calcium + phospholipid surface
- activation complexes

CLOTTING FACTOR DEFICIENCY

Determination of missing factor

- For all but the deficient factor, there will be 50% of normal level of all factors, & clotting assay will be normal
- For missing factor, clotting time will be prolonged
- If more than one factor level abnormal, implies inhibitor
CLOTTING FACTOR DEFICIENCY

- Circulating Inhibitor to Clotting Protein
- Mixing studies will be abnormal
- Need to ensure no heparin is in the specimen
- Important to distinguish lupus anticoagulant from circulating anticoagulant to a clotting factor
 - Former associated with thrombosis
 - Latter with major hemorrhage
- Factor to which inhibitor is directed needs to be determined, along with titer of inhibitor

HEMOPHILIA

- Sex–linked recessive disease
- Disease dates at least to days of Talmud
- Incidence: 20/100,000 males
- 85% Hemophilia A; 15% Hemophilia B
- Clinically indistinguishable except by factor analysis
- Genetic lethal without replacement therapy

HEMOPHILIA

Clinical Severity - Correlates with Factor Level

- Mild – > 5% factor level – Bleeding only with significant trauma or surgery; only occasional hemarthroses, with trauma
- Moderate – 1–5% factor level – Bleeding with mild trauma; hemarthroses with trauma, occasionally spontaneous hemarthroses
- Severe – < 1% factor level – Spontaneous hemarthroses and soft tissue bleeding
- Within each kindred, similar severity of disease
- Multiple genetic defects
 - Factor IX > 800
 - Factor VIII > 1000

Factor XI Deficiency

- 4th most common bleeding disorder
- Mostly found in Ashkenazi Jews
- Mild bleeding disorder; bleeding mostly seen with procedures/accidents
- Levels don’t correlate with bleeding tendency
- Most common cause of lawsuits vs. coagulationists

VON WILLEBRAND FACTOR

- Large Adhesive Glycoprotein
- Polypeptide chain: 220,000 MW
- Base structure: Dimer; Can have as many as 20 linked dimers
- Multimers linked by disulfide bridges
- Synthesized in endothelial cells & megakaryocytes
- Constitutive & stimulated secretion
- Large multimers stored in Weibel-Palade bodies
- Functions:
 1) Stabilizes Factor VIII
 2) Essential for platelet adhesion

VON WILLEBRAND DISEASE

- Autosomal Dominant Inheritance
- Variable Penetrance
- 1953 - Patients lack factor VIII
- 1957 - Plasma from hemophiliac ▲ increase in factor VIII
- 1976 - Von Willebrand Antigen discovered
- Prevalence: 0.8–1.6% (probable underestimate)
- Generally mild bleeding disorder
- Variable test results
VON WILLEBRAND DISEASE
Diagnostic Studies
- aPTT - Prolonged
- vWF Activity Level (Ristocetin Cofactor Activity) - Decreased
- vWF Antigen Level (“Factor VIII Antigen”) - Decreased
- Factor VIII Activity - Decreased
- Bleeding Time - Increased
- Ristocetin-Induced Platelet Aggregation - Decreased
- Multimer Structure - Variable

FACTOR VIII vs. VWF

<table>
<thead>
<tr>
<th>Function</th>
<th>Von Willebrand Factor</th>
<th>Factor VIII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site of synthesis</td>
<td>Endothelial cells,</td>
<td>Megakaryocytes, Hepatocytes</td>
</tr>
<tr>
<td>Genetic control</td>
<td>Autosomal dominant</td>
<td>X-linked recessive</td>
</tr>
<tr>
<td>Hemophilia</td>
<td>Normal</td>
<td>Low</td>
</tr>
<tr>
<td>Von Willebrand Disease</td>
<td>Low</td>
<td>Low</td>
</tr>
</tbody>
</table>

HEMOPHILIA vs. VON WILLEBRAND DISEASE

<table>
<thead>
<tr>
<th>Test</th>
<th>Hemophilia A</th>
<th>Von Willebrand Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bleeding time</td>
<td>Normal</td>
<td>Prolonged</td>
</tr>
<tr>
<td>aPTT</td>
<td>Prolonged</td>
<td>Prolonged</td>
</tr>
</tbody>
</table>

Initial Therapy of Hemophilia A

<table>
<thead>
<tr>
<th>Indication</th>
<th>Hemophilia A Factor VIII:C (U/kg)</th>
<th>Factor VIII Desired Level (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild Hemorrhage</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>Major Hemorrhage</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>Life-Threatening Lesion</td>
<td>40-50</td>
<td>80-100</td>
</tr>
</tbody>
</table>

Initial Therapy of Hemophilia B

<table>
<thead>
<tr>
<th>Indication</th>
<th>Hemophilia B Factor IX: C (U/kg)</th>
<th>Factor IX Desired Level (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild Hemorrhage</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Major Hemorrhage</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Life-Threatening Hemorrhage</td>
<td>80</td>
<td>80</td>
</tr>
</tbody>
</table>

VON WILLEBRAND DISEASE
Therapy
- Goal: Correct bleeding time and Factor VIII level
- Ideal test for monitoring efficacy of therapy never documented
- Treatment usually needed only for surgery or major trauma
- DDAVP (Desmopressin - 0.3 µg/kg by infusion
 - Often effective for Type I; tachyphylaxis develops
 - Ineffective in Type IIa; relatively contraindicated in Type IIb
 - MUST TEST FOR EFFICACY PRIOR TO USE
- Cryoprecipitate - 1000-1200 units every 12 hours for Types I & II vWD; 2000-2400 units every 12 hours for Type III vWD
- Factor VIII concentrate - Do not use, except:
 - Humate-P (only one containing significant vWF)
CLOTTING FACTOR DEFICIENCY

Treatment
- For Factor XII & above, no treatment needed
- FFP for Factor XI deficiency, factor XIII deficiency
- Cryoprecipitate for low fibrinogen, factor XIII deficiency
- Factor IX concentrate for deficiency of Vitamin K-dependent clotting factors (important to make sure the one you are using has the factor that you need)

CLOTTING DISORDERS

Acquired
- Vitamin K deficiency
- Liver disease
- Coumadin therapy
- Heparin therapy
- Disseminated Intravascular Coagulation

VITAMIN K DEFICIENCY

- Almost always hospitalized patients
- Require both malnutrition & decrease in gut flora
- PT goes up 1st, 2nd to factor VII's short half-life
- Treatment: Replacement Vitamin K
- Response within 24-48 hours

CLOTTING DISORDERS

Acquired
- Vitamin K deficiency
- Liver disease
- Coumadin therapy
- Heparin therapy
- Disseminated Intravascular Coagulation

LIVER DISEASE

- Decreased synthesis, vitamin K dependent proteins
- Decreased clearance, activated clotting factors
- Increased fibrinolysis 2nd to decreased antiplasmin
- Dysfibrinogenemia 2nd to synthesis of abnormal fibrinogen
- Increased fibrin split products
- Increased PT, aPTT, TT
- Decreased platelets (hypersplenism)
- Treatment: Replacement therapy
 - Reserved for bleeding/procedure