LABORATORY DIAGNOSIS OF PROTHROMBOTIC STATES

REGULATION OF COAGULATION
Introduction
- Coagulation necessary for maintenance of vascular integrity
- Enough fibrinogen to clot all vessels
- What controls clotting process?

COAGULATION CASCADE

INTRINSIC PATHWAY
- FXI
- FIX
- VIII

EXTRINSIC PATHWAY
- FXII
- TF
- FXIa
- VIIa
- FIX
- FVIII

Surface Active Components
Middle Components
Common Pathway

COAGULATION INHIBITORS
- Tissue Factor Pathway Inhibitor (TFPI)
 - Lipoprotein Associated Coagulation Inhibitor (LACI)
- Extrinsic Pathway Inhibitor (EPI)
 - Complexes with Factors VIIa/TF/Xa; inactivates Xa
 - Antithrombin III/Heparin Cofactor II/Heparin
 - Binds and Inactivates Enzymes
 - Protein C/Protein S/Thrombomodulin
 - Cleaves & Inactivates Cofactors (Va & Vila)
 - Plasminogen - 3º hemostasis
 - Cleaves Fibrin

ANTICOAGULANT PROTEIN DEFICIENCY
Disease entities
- Heterozygous Protein Deficiency
 - Increased Venous Thrombosis
 - Occasional Increased Arterial Thrombosis
 - Warfarin Induced Skin Necrosis
- Homozygous Protein Deficiency
 - Neonatal Purpura Fulminans
 - Fibrinogenolysis
 - Chronic DIC

ANTICOAGULANT PROTEIN DEFICIENCY
- Dominant
 - Increased Venous Thrombosis
 - Young Age of Thrombosis
 - No Predisposing Factors to Thrombosis
 - Increased Thrombin Generation
 - Positive Family History
- Recessive
 - No history of thrombosis
 - No family history
 - Neonatal Purpura Fulminans
 - Increased Thrombin Generation
ACTIVATED PROTEIN C RESISTANCE
- 1st described by Dahlback, 1994
- Hallmark: Failure of activated Protein C to prolong aPTT
- First noted in screening of plasma samples of patients with increased clotting
- Functional defect described before protein defect noted

ACTIVATED PROTEIN C RESISTANCE
- Bertina et al described genetic defect
- Mutation of Arg 506 → Gln
- Named Factor V Leiden
- Found in > 98% of patients with APC Resistance

ACTIVATED PROTEIN C RESISTANCE
- Extremely common (5-20% of Caucasian population with mutation)
- Increases risk of venous thromboembolism (VTE) c. 4x in heterozygous form, more in homozygous
- Can exist in combination with other defects (protein C, protein S, ATIII, plasminogen)
- In combination, has synergistic effect on other anticoagulant protein deficiencies

FACTOR V LEIDEN
- Normal procoagulant activity
- Inactivated slowly by activated protein C
- Leads to increased prothrombinase complex activity due to failure to remove factor Va
- Patients also display increased factor VIIIa/tenase activity

PROTEIN C - MECHANISM OF ACTION
FACTOR Va INACTIVATION

\[
\text{Factor Va} \xrightarrow{\text{APC}} \text{iFVa}
\]

FACTOR VIIIa INACTIVATION
- Factor V is cofactor for Factor VIIIa inactivation
- Factor V Leiden unable to act as cofactor in VIIIa inactivation
- Therefore, increased VIIIa inactivation → increased tenase activity
PROTEIN C - MECHANISM OF ACTION

FACTOR VIIIa INACTIVATION

\[
\text{APC} \quad \text{Factor VIIIa} \quad \text{Pro S} \quad \text{PL} \quad \text{Factor V} \quad \text{iFVIIIa}
\]

HYPERCOAGULABLE STATES

Prothrombin G20210 > A

- First described by Poort et al, 11/96
- Mutation in 3' non-coding sequence of prothrombin gene
- Northern European mutation (still being studied in non-European populations)

HYPERCOAGULABLE STATES

Prothrombin G20210 > A

Mechanism of increased thrombosis unknown
Increased prothrombin synthesis seen (> 115% of normal)
Implicated in both arterial (stroke) and venous thrombosis as well as pregnancy-related thrombosis

HYPERCOAGULABLE STATES

Hyperhomocysteinemia

- Inborn error of metabolism
- Leads to buildup of homocysteine via several pathways
- Homozygous form associated with mental retardation, microcephaly, nephrolithiasis, seizure disorder, accelerated atherosclerosis, marked increase in thromboembolic disease
- Heterozygous form assoc. with mildly increased thromboembolic disease but not other problems

HYPERCOAGULABLE STATES

Hyperhomocysteinemia - Causes

- Vitamin B$_{12}$ deficiency
- Folic acid deficiency
- Vitamin B$_{6}$ deficiency
- Cystathione synthase deficiency (classic form)
- Methyl tetrahydrofolate reductase deficiency (most common by far)
HYPERCOAGULABLE STATES

Hyperhomocysteinemia - Diagnosis
- Fasting homocysteine levels; considerable variability depending on assay
- Methionine loading if clinical suspicion high, but can precipitate thrombosis
- Methyl tetrahydrofolate reductase mutation (MTHFR C677 >> T) - Only relevant if homozygous

ANTICARDIOLIPIN ANTIBODY
Lupus Anticoagulant
- Not necessarily associated with lupus (< 50%)
- Not associated with bleeding except in rare circumstances
- Associated with thrombosis - arterial & venous
- Associated with false (+) RPR
- Associated with recurrent spontaneous abortions
- Mechanism of thrombotic tendency unknown

LUPUS ANTICOAGULANT
- Caused by antiphospholipid antibodies that interfere with clotting process in vitro but not in vivo
- Dilute phospholipid so level of phospholipid becomes rate-limiting
- Many add confirmatory study of either aPTT with platelets as PL source or orthogonal PL as PL source

ANTIPHOSPHOLIPID ANTIBODY ASSAY
- Usually antigenic as opposed to functional assay
- True antigen is source of controversy - ? if phospholipid is true antigen or if associated protein is true antigen
- ? Pathogenicity of what is being measured
- Impossible to standardize assay even batch-to-batch of reagents

ACQUIRED HYPERCOAGULABLE STATES
Mechanisms in Acute Inflammation
- C4b Binding Protein - Acute Phase Reactant
 - Increases in inflammatory diseases
 - Binds to Protein S
 - Bound Protein S inactive as cofactor
- Inflammation - Increased IL-1 & TNF
 - Both downregulate thrombomodulin
 - Thrombin becomes procoagulant instead of anticoagulant protein

ACQUIRED HYPERCOAGULABLE STATES

- Anticardiolipin Syndrome
- Malignancy
- Immobilization
- TTP
- DIC
- Oral Contraceptive Therapy
- Prosthetic Valves
- PNH
- Myeloproliferative diseases
- Nephrotic Syndrome
- Inflammatory Diseases
- Atherosclerosis
- Surgery
- Diabetes mellitus
PROTHROMBOTIC DISORDERS

Summary

- No screening test readily available
- Probably look at genetic tests 1st
 - Factor V Leiden
 - Prothrombin G20210A
 - MTHFR mutation
- Antiphospholipid antibody studies
- Homocysteine levels
- Protein C, Protein S, ATIII, Plasminogen
- Look for signs of inflammation
- Consider prolonged anticoagulant Rx if any of above positive
- Screen family for disease if positive