Molecular Diagnosis

In Oncology & Genetics

Diagnostic Molecular Pathology

- USE OF:
 - Sequence Specific INFORMATION
 - MACROMOLECULES
 - for:
 - Risk identification
 - Diagnosis
 - Prognosis
 - Prediction of response to therapy
 - Monitoring therapeutic responses

Macromolecules

- Peptides/proteins
- Polysaccharides
- Polynucleotides/nucleic acids

“Nucleic Acid Diagnosis”

- Use of specific sequence information
 - in nucleic acids
 - DNA and RNA
 - for clinical diagnosis

Analysis Of Information In Nucleic Acids

- Sequencing
- Hybridization
- Amplification
 - with specific primers
- Restriction enzyme digestion
 - Recognize specific sequences
- Electrophoretic mobility
- Translation

Molecular Oncology

- DIAGNOSTIC/PROGNOSTIC INFORMATION PROVIDED BY:
 - Gross alterations in DNA content of tumors
 - Cell cycle information
 - Molecular Markers of Clonality
 - Oncogene/Tumor Suppressor gene mutations
 - Tumor Specific Translocations
 - “Tissue specific” mRNA in tumor staging
 - Minimal residual disease determination
Identification Of Clonal Proliferations

- Antigen receptor gene rearrangements.
 - Southern Blotting: IgH, TCR; EBV termini.
 - PCR: Ig and TCR gene rearrangement.
- X-inactivation.
 - Human androgen receptor assay.
- Microsatellite allelotyping.

Translocations w/o gene fusion

<table>
<thead>
<tr>
<th>Tumor</th>
<th>Translocation</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ewing's Sarcoma</td>
<td>(11;22); (12;22)</td>
<td>EWS/FLI1; EWS/ERG; EWS/EYT1; EWS/EYT4</td>
</tr>
<tr>
<td>Alveolar Rhabdomyosar.</td>
<td>(1;13); (2;13)</td>
<td>PAX7/FOXH1; PAX3/FOXH1</td>
</tr>
<tr>
<td>Synovial sarcoma</td>
<td>(1;18)</td>
<td>SYT/SSX1</td>
</tr>
<tr>
<td>DSRCT</td>
<td>(11;22)</td>
<td>EWS/WT1</td>
</tr>
<tr>
<td>Myxoid round cell liposarcoma</td>
<td>(12;22)</td>
<td>CHOP/FUS</td>
</tr>
<tr>
<td>Clear cell sarcoma soft parts</td>
<td>(12;22)</td>
<td>EWS/ATF-1</td>
</tr>
<tr>
<td>Extraskeletal myxoid chondrosar.</td>
<td>(19;22)</td>
<td>EWS/TEC</td>
</tr>
</tbody>
</table>
TRANSLOCATIONS: DETECTION METHODS

- **Fusion product:**
 - Detect at DNA or RNA level.
 - DNA level: FISH, Southern blotting.
 - RNA detection: RT-PCR
 - Highly sensitive.
 - Cheaper.
 - "Real-time" detection.
 - Semi-quantitative detection – minimal residual disease/quantification.
 - Chimeric transcript detectable during "complete remission": rising titer - impending relapse.
 - Need for fresh tissue (in general)

- **DNA level:** FISH, Southern blotting.

- **RNA detection:** RT-PCR
 - Highly sensitive.
 - Cheaper.
 - "Real-time" detection.
 - Semi-quantitative detection – minimal residual disease/quantification.
 - Chimeric transcript detectable during "complete remission": rising titer - impending relapse.
 - Need for fresh tissue (in general)

Spectral Karyotyping (SKY)

- FISH w/multiple probes to identify *all* chromosomes
 - Identify *any* translocations, markers etc. w/one test.
 - Need for special equipment
 - Need for metaphases.

Gene Amplifications & Specific Mutations

- **Amplification**
 - n-Myc: neuroblastoma.
 - Her2/Neu: breast cancer.

- **Mutations:**
 - C-Kit: gastrointestinal stromal tumors.
 - EGFR: Lung CA response to Iressa.
 - p53: poor prognosis, reduced chemosensitivity.

Tumor Suppressor Gene Mutations

- "loss of function mutations"
 - many possible mutations
 - "hot-spots"
 - e.g., p53: Exons 6, 7, 8, 9 > 90% of mutations
 - truncated protein: "protein truncation test"
 - "whole gene sequencing"
 - Tumor percentage.

“Oncogene” Mutations

- "gain of function mutations."
 - limited number for each gene.
 - "regulatory site mutations" - "constitutive activation."
 - "active site mutations" - "constitutive activation/altered substrate.
 - Often recurrent - test for known mutations.
 - e.g., c-Kit; c-RAS; Ret, EGFR, etc.

Mutations in GIST

- **GIST:** CD117/PDGFRA positive GI stromal tumors.
 - c-kit mutations: constitutively activated KIT tyrosine kinase.
 - Juxtamembrane domain (exon11) or transmembrane domain (exon 9)
 - Imatinib (Gleevec) responsive.
 - Tyrosine kinase domain mutations:
 - Val654Ala, Thr670Ile: Imatinib resistant
EGFR mutations in Lung CA

- 10% of patients with Lung CA – rapid response to Gefitinib (Iressa)
 - Non smokers
 - Females
 - Japanese
 - Adenocarcinoma
- Mutations in exons 18, 19, &21
 - Kinase catalytic domain
 - Increased inhibition by Gefitinib

Minimal Residual Disease

- Quantitative determination of tumor-specific fusion transcripts.
 - Presence vs quantitation.
- Detection of clone-specific sequences for T and b-cell neoplasms.
 - (Problem: ongoing mutations in antigen receptor genes).

Minimal Residual Disease/ Molecular Staging

- Cell-type specific transcript (mRNA):
 - PSA (prostate);
 - mammaglobin (breast);
 - CEA in lymph nodes (adenoCA, e.g., Colon);
 - tyrosinase (melanoma);
 - thyroglobulin (thyroid).
 - Caveat: ? cell-type specificity of low copy-number transcripts.

MRD/Molecular Staging

- RT-PCR for mets in histo negative sentinel nodes.
- Melanoma: Tyrosinase, MART-1, MAGE, GalNAc-T, PAX3
 - Variable results; ? Increased recurrence in histo-/PCR+, vs. histo-/PCR-
- Breast: Mammaglobin1, mammaglobin 2, CEA, CK19, etc.

Tumor Classification/diagnosis W/ Microarrays

- Label total RNA from a tumor
- hybridize to chip w/ ≥ 25,000 cDNAs/oligonucleotides.
 - Expression profile unique to tumor type.
 - ? Predict behavior
 - ? Identify origin of mets
 - ? Identify targets for therapy.

Molecular Genetic Tests

- Genetic test:
 - Analysis of human
 - DNA
 - RNA
 - chromosomes
 - proteins
 - metabolites
 - to detect heritable disease-related
 - genotype,
 - phenotype
 - karyotype
 - for clinical purposes.
Genetic Diagnosis

"Purpose"

- Diagnostic Testing
- Screening
- Presymptomatic Testing
- Prenatal testing
- Preimplantation Diagnosis
- Pharmacogenetic testing
- Susceptibility to environmental agents

Genetic Alterations

- Chromosomal alterations
- "Gene-level" alterations.

Test Choice

- Cost
- Sample requirements
- Turnaround time
- Sensitivity/Specificity
- Positive/ Negative predictive value
- Type of mutation detected
- Genotyping vs mutation scanning

Conventional Cytogenetics (Karyotyping)

- Detect numerical structural chromosomal alterations
 - trisomy
 - monosomy
 - duplications
 - translocations, etc.

Conventional Cytogenetics (Karyotyping)

- Advantages:
 - evaluate all chromosomes
 - prior specification of chromosome unnecessary
 - detect unsuspected abnormality
 - detect balanced alterations
 - (No gain or loss of genetic material)
 - FISH may be performed.
 - characterize unexpected alterations

Conventional Cytogenetics (Karyotyping)

- Disadvantages:
 - Need for live cells to grow in culture
 - (ACMG standards, failure <1%).
 - Turnaround time - up to 10 days
 - (ACMG standards - 90% of results w/in 14 days)
 - Labor Intensive
FISH
• Use of fluorescently labeled probes to specifically visualize
 – entire chromosomes (chr. paint probes)
 – centromeres (centromeric probes)
 – specific loci (locus-specific probes)
• Metaphase
 – All types of probes
• Interphase
 – Centromeric and locus-specific probes only

FISH
• Identify:
 – translocations
 – marker chromosomes
 – Small deletions/duplications w/ locus-specific probes
 • e.g., DiGeorge's syndrome.

Interphase FISH
• rapid (<48 hours) detection of
 – Numerical abnormalities
 – Duplications/deletions/amplifications
 – translocations
 – mosaicism

Interphase FISH
• Prenatal Chr.13, 18, 21, X + Y
 – approx. 75-85% of all clinically relevant abnormalities.
• Dual color FISH w/ subtelomeric probes:
 – Prenatal dx of chromosomal translocations

Interphase FISH
• Need for confirmatory conventional cytogenetic testing.
• Need to specify chromosome
 – Information only about specific chromosome/locus tested.

Metaphase FISH
• Supplement conventional cytogenetics
 – Identify marker chromosomes
 – extra unknown material attached to chromosome/loss of segment
 – detect/identify rearrangements (incl. cryptic translocations),
 – identify/quantify mosaicism
Metaphase FISH
- Need to specify Chromosome/locus
 - Multiple tests to identify marker chromosome.
 - Multiprobe FISH.

Gene Dosage
Gains/Losses
- Comparative genomic hybridization (CGH)
 - Label normal and test DNA with separate dyes
 - Competetively hybridize to
 - Metaphase Spread or
 - cDNA array.
 - Detect Gains and losses.

Gene Dosage
Gains/Losses
- Classical CGH
 - Hybridize to metaphase spread
 - Resolution approximately 5Mb
 - Information on all chromosomes
 - No need for culture.
 - Can use archival material (e.g., placenta, POC, tumor etc.)
 - Single cell DNA amplification & CHG
 - Applicable to preimplantation genetic diagnosis (PGD)

Gene Dosage
Gains/Losses
- Array-based CGH
 - Hybridize to BAC-based or cDNA array.
 - Higher resolution (50kb vs 5MB)

Gene Dosage
Gains/Losses
- PCR-based methods
 - Real-time (quantitative) PCR.
 - Microsatellite PCR.
 - Long-range PCR.
 - Probe amplification techniques.
- Rapid
- For specific loci
 - May be “multiplexed” for multiple loci

Molecular Tests
- Test for:
 - Karyotype
 - Gain or loss of genetic material ("dosage")
 - Genetic linkage
 - Known/recurrent mutations
 - Variations in lengths of repeat sequences
 - Alterations in DNA methylation
 - Unknown mutations in multiple genetic segments
Types of mutations-gene

- **Point mutations**
 - Missense (change an amino acid)
 - Nonsense (premature termination)
 - Silent
- **Deletion**
 - Large variation in size
- **Insertion**
- **Duplication**
- **Splice site**
- **Regulatory**
- **Expanded repeat**

Point Mutations

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ATC</td>
<td>TTC</td>
<td>AGC</td>
<td>TGC</td>
<td>GAG</td>
<td>CTA</td>
<td>TAT</td>
</tr>
<tr>
<td>Leu</td>
<td>Phe</td>
<td>Ser</td>
<td>Cys</td>
<td>Glu</td>
<td>Leu</td>
<td>Tyr</td>
</tr>
</tbody>
</table>

Missense Mutations

- Change Amino Acid
- Change Protein Structure/function
 - Depending upon specific AA change
- Loss of function:
 - e.g., Hb S (GAG to GTG – Glu to Val),
 Hemochromatosis (C282Y)
- "Gain of Function":
 - e.g., Factor V Leiden
- No functional effect:
 - e.g., KVLQT1 P448R

Missense mutations

- When is a missense mutation significant?
 - known structural and functional domain
 - evolutionarily conserved residue
 - independent occurrence in unrelated patients
 - absent in large control sample
 - novel appearance & cosegregation w/disease phenotype in pedigree
 - in vitro loss of function
 - restoration of function by WT protein.

Nonsense Mutations

- Amino Acid codon to "Stop"
- Three stop codons
 - UAA, UAG, UGA
- Truncated protein
 - Protein truncation test
- E.g., Beta0 Thalassemia in Sardinia
 - Codon 24, CAG to TAG
Deletions

- Complete/partial gene deletion
 - Duchenne Muscular Dystrophy
 - Alpha thalassemia
- Multiple genes ("contiguous gene syndromes"
 - DiGeorge Syndrome
 - TSC2-PKD1
 - WAGR syndrome

Insertions

- Tay Sachs Disease
 - 4bp insertion in Ashkenazi Jews
- Hemophilia A
 - L1 insertion in FVIII gene (1% of patients)

Splice junction mutations

- GT/AG rule
 - AAGGTGTAGT. / YYYYYYYYYNCAAG
- Loss of splice site
 - intron not spliced out
- Creation of novel splice sites
 - >100 mutations
 - e.g., Hemoglobin E
 - Missense mutation and splice site error
 - Both normal and new splice site use
 - Hemoglobinopathy AND thalassemia features

Frame-shift Mutations

- Codon = 3 bp
- insertion/deletion not multiple of 3bp
 - Change of reading frame - entire protein altered.
 - e.g., Tay Sachs 4 bp insertion, BRCA1 185 delAG, BRCA2 6174delT, etc.
 - blood group O (1 bp deletion)

Other mutations

- Cap-site Mutants
- Mutations in initiation codons
- Creation of a new initiation codon
- Mutations in termination codons
- Polyadenylation/cleavage signal mutations.
Unstable trinucleotide repeats

- Fragile X Syndrome (CGG)n 5'UT
- Huntington’s syndrome (CAG)n polyglutamine
- Myotonic dystrophy (CTG)n 3'UT
- SCA type 1 (CAG)n polyglutamine
- Friedrich’s Ataxia (GAA)n intron 1

Mutation Testing

- Tests for recurrent mutations.
 - Limited # of specific mutations.
 - significant proportion of cases e.g., Factor V Leiden, Hemochromatosis.
- Mutation Scanning Methods.
 - Multiple "private" mutations of one or more genes.
 - e.g., BMPR2 mutations in familial PPH,
- Combination.
 - e.g., BRCA1/2, CFTR etc.

Recurrent Mutation Tests

- Many rapid methods.
- High sensitivity/specificity.
- Test choice - laboratory preference
 - Workflow, equipment, kit availability
 - patent issues, etc.
- Detect
 - heterozygotes,
 - compound heterozygotes
 - homozygotes

Recurrent Mutation Tests

- Choice of mutation tested
 - Clinical syndrome
 - Family history
 - Ethnicity
- Positive results
 - Unambiguous
 - Technical false positive rare (most methods)
 - Positive predictive value, penetrance, etc. usu known

Recurrent Mutation Tests

- Negative predictive value:
 - Population screening:
 - 1 - (ethnic prevalence x [1 - sensitivity for specific ethnic group])
 - Family history (index case w/ unknown mut)
 - 1 - (prior probability x [1 - sensitivity for specific ethnic group])
 - Family history (known mutation in index case)
 - 100%
 - Affected individual (unknown mutation)
 - 0%

Recurrent Mutations

- Methods
 - PCR-RFLP
 - Allele-specific probes/primers
 - Direct sequencing/"Minisequencing"/Pyrosequencing.
 - Molecular Beacons/TaqMan probes.
 - Oligonucleotide ligation assay.
 - Mass spectroscopy-based methods.
PCR-RFLP
- Quick, Robust
- Sources of error:
 - Amplification failure of one allele
 - linkage disequilibrium with primer site polymorphism (HFE)
 - Failure of restriction enzyme
 - Control in same tube
 - Different variants with loss of same restriction site

Real-Time PCR
- New instruments can monitor PCR during thermocycling
 - intercalating dye:
 - non-specific increase in fluorescence with increased double-stranded DNA
 - "Melting curve" analysis - monitor denaturation of double-stranded DNA
 - Probes using Fluorescence Resonance Energy Transfer ("FRET")
 - Monitor binding of probe to wild-type or mutant allele.

Repeat Expansions
- Southern Blotting Methods
 - Gold Standard
 - Labor intensive
 - need for high quality DNA
- PCR-based Methods
 - Rapid
 - Amplification failure with very long repeats.

Expanded Repeats-Huntington Disease

<table>
<thead>
<tr>
<th>[CAG]_{10-26}</th>
<th>[CAG]_{27-35}</th>
<th>[CAG]_{35-41}</th>
<th>[CAG]_{42-121}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>At risk for expansion</td>
<td>Variable penetrance</td>
<td>Affected</td>
</tr>
</tbody>
</table>

Mutation Scanning Methods
- Test one or more genes for unknown variation in.
 - Exons
 - Introns
 - splice sites
 - Promoters/enhancers
 - "locus control region"

Mutation Scanning Methods
- Ideal method:
 - Screen large DNA sequence
 - 100% sensitivity and specificity
 - Unambiguously define mutation.
 - Minimum # of steps
 - High throughput
 - No special equipment
 - No dangerous reagents
- No such method
 - Compromise
Screening Methods

- Physical properties of amplified gene segments
 - Denaturation profile, electrophoretic mobility, etc.
 - SSCP
 - DGGE
 - DHPLC
 - Cleavage fragment length polymorphisms
 - Heteroduplex analysis
 - Dideoxy fingerprinting.

Screening methods

- Sensitivity determined by specific mutation
- Need for multiple conditions
- One datapoint per gene segment evaluated
- Screen for presence, not identity of mutation.

Mutation Scanning Methods

- **Direct Sequencing**
 - Screen presence and identity of mutation
 - Bidirectional sequencing
 - 2 data-points per base sequenced.
 - DNA sequencing
 - Usu. multiple exons tested.
 - Splice-site mutations may be missed, especially mutations deep in large introns.
 - RNA sequencing
 - Need for cells w/c express gene
 - "Nonsense mediated decay"
 - RNA more labile

Direct Sequencing Methods

- Automated fluorescent sequencing
 - DNA/cDNA amplification, purification, and re-amplification with fluorescent "Big-Dye" terminators.
 - Widely available
 - Need to visually scan electropherograms
 - Verify "base calling", heterozygous bases

Direct Sequencing Methods

- Pyrosequencing
 - Limited to short sequences.
 - Need to optimize algorithm for each segment
- Chip-based" sequencing
 - Rapid
 - Reduced sensitivity for heterozygous and frame-shift mutations.

Interpretation of Variant

- Previously reported variant
 - Known to be cause of disorder
 - Known to be "neutral variation"
Interpretation of Variant

• New variant:
 – Type likely to be assoc. w/disorder
 • frame-shift mutation
 • start “ATG” mutation
 • “Stop codon”
 • splice-junction mutation
 • non-conservative missense in active site,

• New Variant
 – Type likely to be “neutral”
 • e.g., no change in amino acid, and not
 cryptic splice site
 – Type w/c may or may not be assoc. w/ disorder
 • E.g., non-conservative missense
 mutation, in region not known to be
 active site, etc

Interpretation of Variant

• Recessive Disorders.
 – Test parents to ensure two variants in
 trans (separate alleles) not in cis
 (same allele).

Testing Strategies.

• Single gene disease w/ only recurrent
 mutations (e.g. Achondroplasia or
 MEN2)
 – Test for recurrent mutation
 – Positive result
 • penetrance known
 – Negative result
 • False negative rate known.
 • Phenotypic testing, if indicated.

Testing Strategies.

• “Single gene” condition w/ repeat
 polymorphisms (Fragile X)
 – Test for repeat polymorphisms using either
 • Southern Blotting
 • PCR (very large expansions may be
 missed)
 • Clinical syndrome w/ multiple genes
 • “recurrent” (SCA)
 • Private (Long QT)
Testing Strategies

Cystic Fibrosis

<table>
<thead>
<tr>
<th>CFTR Screening</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Carrier frequency in various ethnic populations</td>
</tr>
<tr>
<td>- European Caucasian: 1/25</td>
</tr>
<tr>
<td>- Ashkenazi Jewish: 1/25</td>
</tr>
<tr>
<td>- Hispanic American: 1/46</td>
</tr>
<tr>
<td>- African American: 1/65</td>
</tr>
<tr>
<td>- Asian American: 1/90</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CFTR Screening</th>
</tr>
</thead>
<tbody>
<tr>
<td>• CFTR Gene:</td>
</tr>
<tr>
<td>- 250 kb</td>
</tr>
<tr>
<td>- 27 Exons</td>
</tr>
<tr>
<td>- 6.5kb mRNA</td>
</tr>
<tr>
<td>- In-frame deletion of codon 508 in 70% of cases (Caucasians/Ashkenazim)</td>
</tr>
<tr>
<td>->1000 mutations reported</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CFTR Screening</th>
</tr>
</thead>
<tbody>
<tr>
<td>• ACMG recommendations</td>
</tr>
<tr>
<td>- Testing offered to all Caucasians and Ashkenazim, made available to all other ethnic groups</td>
</tr>
<tr>
<td>- Simultaneous or sequential couple screening</td>
</tr>
<tr>
<td>• Give results to both partners</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CFTR Screening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Universal pan-ethnic core mutation panel consisting of:</td>
</tr>
<tr>
<td>- 25 mutations.</td>
</tr>
<tr>
<td>- 3 exonic polymorphisms as reflex tests.</td>
</tr>
<tr>
<td>- 5/7/9T intronic polymorphism as reflex test only if R117H is positive.</td>
</tr>
</tbody>
</table>
CFTR Screening
- Extended mutation panels for positive-negative couples not encouraged
- Reporting of results and residual risks should be based on model report forms developed by ACMG committee
- Primary care providers uncomfortable w/ these complexities should refer pt to genetic counselor

CFTR Screening
- 5T/7T/9T intronic polymorphism
- R117H + 5T in cis - CF
- R117H + 7T in cis - CBAVD
- R117H (etc.) + 5T in trans – CBAVD
- 5T/5T homozygosity - CBAVD
 - R117H causes CF only when w/ 5T on same allele
 - 5T with least efficiency of RNA processing
 - 5T in 5% of US population

CFTR Screening
- Limitations
 - Inability to detect all CF mutations
 - Correct paternity assumed; results applicable only for current reproductive partners
 - Assumes family history is truly negative
 - Poor genotype-phenotype correlation - prognostic prediction in affected offspring difficult

CFTR Screening
- Concurrent testing: Both partners screened, both informed.
- Advantages:
 - Quicker
 - Alerts both partners w/ current and future partners
 - Informs both families of potential risk
- Disadvantage:
 - Anxiety
 - Cost

CFTR: INCIDENCE, CARRIER, MUTATION RATES: BY POPULATION

<table>
<thead>
<tr>
<th>Group</th>
<th>Incidence</th>
<th>Carrier freq.</th>
<th>%ΔF508</th>
<th>% other "common"</th>
<th>% group-specific</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caucasian</td>
<td>1:3,300</td>
<td>1/29</td>
<td>70</td>
<td>13</td>
<td>80-90%</td>
<td>97%</td>
</tr>
<tr>
<td>Hispanic</td>
<td>1/8-9000</td>
<td>1/46</td>
<td>46</td>
<td>11</td>
<td>57%</td>
<td></td>
</tr>
<tr>
<td>Ashkenazi</td>
<td>1:3,300</td>
<td>1/29</td>
<td>80</td>
<td>67</td>
<td>97%</td>
<td></td>
</tr>
<tr>
<td>Native Am</td>
<td>1:1500-3970</td>
<td>0</td>
<td>25</td>
<td>69</td>
<td>94%</td>
<td></td>
</tr>
<tr>
<td>African Am</td>
<td>1:15,300</td>
<td>1:60-65</td>
<td>48</td>
<td>23</td>
<td>75%</td>
<td></td>
</tr>
<tr>
<td>Asian Am</td>
<td>1:32,100</td>
<td>1:90</td>
<td>80</td>
<td>0</td>
<td>30%</td>
<td></td>
</tr>
</tbody>
</table>
Negative results: + family history

• Caucasian Couple
 • each w/ sibling with CF.
 – (Prior Probability of each parent being a carrier = 2/3).
• Both test negative for the 25 mutations.
 – Probability parent is carrier = \((0.67 \times (1 - 0.9)) = 0.067\).
 – Probability both parents carriers = .004489
 – Probability of affected child = 1 in 900

• Hispanic Couple w/ same history and results:
 – Probability of being carrier = \((0.67 \times (1 - 0.57)) = 0.287\);
 – probability of an affected child = 1 in 48!
 – (versus untested prob.: .67*.67*.25=1/9)

• Asian couple w/ same hx and results:
 – probability of affected child 1 in 18!

Genetic testing additional considerations:

• Benefits Vs. Risk of Testing:
 – Availability of treatment/prevention of clinical syndrome
 – Presence or absence of pre-clinical manifestations.
 – Discrimination:
 • Insurance
 • Employment
 • Confidentiality

Additional Considerations

• Potential interventions:
 – Behavioral
 • lung cancer-risk - smoking cessation;
 • heart disease risk - diet/exercise;
 • risk of breast/colon cancer - screening acceptance.
 – Medical
 • e.g., prophylactic mastectomy/thyroidectomy;
 • blood-letting/blood donation for HFE;
 • anti-arrhythmics for Long QT, etc.

• Pre-morbid/clinical syndrome
 – Is there a clinically identifiable syndrome?
 – ? Need for intervention prior to clinical manifestations

• Technical considerations
 – e.g., Fragile X-syndrome.

• Patent issues
 – affect availability/cost of testing
Additional Considerations

- **Ethics**
 - Implications for patients and relatives.
 - E.g., identical twins; siblings;
 - Paternity issues -
- **Legal issues**
 - New York State Civil Right Law:
 - Need for informed consent
 - Genetic testing only (not phenotypic testing)
 - Standards for informed consent in civil rights law, section 79-l
 [http://assembly.state.ny.us/leg/?cl=17&a=12].

Factors affecting utility of genetic testing

- **Increased utility**
 - High morbidity and mortality of the disease
 - Effective but imperfect treatment
 - High predictive power of genetic test (high penetrance)
 - High cost or onerous nature of screening and surveillance methods
 - Preventive measures that are expensive or associated with adverse effects

- **Decreased utility**
 - Low morbidity and mortality of disease
 - Highly effective and acceptable treatment (i.e., no harm is done by waiting for clinical disease to treat patient)
 - Poor predictive power of the genetic test (low penetrance)
 - Availability of inexpensive, acceptable, and effective surveillance methods (or need for surveillance whether or not one has increased genetic risk)
 - Preventive measures that are inexpensive, efficacious, and highly acceptable - e.g., folate supplementation.

Ordering Molecular Tests

- **Patient preparation:** None
 - Avoid heparin: interferes with PCR.
- **Specimens:**
 - Fresh whole blood: EDTA/Citrate
 - Fresh tissues
 - Frozen tissues
 - Paraffin embedded tissues
 - Slides etc.

- **Specimen Handling**
 - DNA-based tests:
 - Room temperature, up to 72 hours (maybe more with special buffers)
 - RNA-based tests:
 - Deliver ASAP (4-6 hours)
 - Special considerations for proprietary test.

Essential info (Molecular Genetic Tests):

- Clinical information
- Pedigree, if possible
- Race
- Reason for testing.

Informed consent:

- New York State Civil Rights Law.
 - Nature of test; availability of genetic counseling; implications of positive and negative tests, etc.