or, Which one(s) of these (#$%^@^&*) drugs should be the one(s) I use, and for what?

- One of most common treatments in hospital & out
- 2nd most common cause of iatrogenic complications (behind only infections)
- 2nd most expensive source of increased hospital stays
ANTICOAGULANT THERAPY

- Focus on venous thromboembolism (VTE)
- Focus on parenteral therapy
- Not topics for discussion today:
 - Thrombolytic therapy. Anti-platelet therapy
- Oral anticoagulants (warfarin) & new agents @ end

ANTICOAGULANT THERAPY

Goals of Therapy

- PREVENTION OF THROMBOEMBOLISM!!!
- Stop propagation of clot
- Prevent formation of further clot
- Allow dissolution of clot
- Can be used for prophylaxis against clot formation
Anticoagulant Therapy

- Hemorrhage is a complication of overaggressive anticoagulant therapy
- \textbf{Thrombosis is a complication of underaggressive anticoagulant therapy}

\textbf{All VTE}

\textit{Annual Incidence Per 100,000}

Prophylaxis vs TE Disease

- Requires smaller dose than does treatment
- Less risk of bleeding with prophylaxis doses
- Stratified by risk of developing thromboembolic disease
- In surgery patients, pre-op therapy generally more effective than post-op therapy (with one exception)

Risk Assessment

Intrinsic Factors
- Family history/Past History VTED
- Advanced Age
- Obesity
- Varicose Veins
- Venous insufficiency
- Thrombophilia

Extrinsic Factors
- Pregnancy/Puerperium
- Estrogen therapy
- Paralysis
- Previous or current malignancy
- Chronic heart failure
- Chronic respiratory failure
- Inflammatory bowel disease

Molecular Risk Factors
- Factor V Leiden Mutation
- Activated Protein C resistance
- Deficiencies:
 - Antithrombin III
 - Protein C
 - Protein S
 - Plasminogen
- Prothrombin gene mutation
- Antiphospholipid antibody syndrome/lupus anticoagulant
- Excess Factor VIII

Risk Factors Are Cumulative

Venous Thromboembolism – Indications for Prophylaxis

- Primary VTE Risk Factors
 - Sufficient indication for VTE Prophylaxis
- Secondary VTE Risk Factors
 - Insufficient indication by themselves

Primary Risk Factors for VTE

- Major surgery
- Acute MI
- Major trauma
- Paralytic stroke
- Cancer
- Spinal cord injury
- Pelvic/hip fracture
Secondary Risk Factors for VTE

- Congestive heart failure
- Previous VTE
- Immobilization
- Obesity
- Chronic respiratory failure
- Increasing age
- Hematological disorders
- Central venous catheter
- Varicose veins
- Pregnancy
- Estrogen treatment
- Hospitalization

Incidence of DVT
Correlation with the number of risk factors

![Graph showing the incidence of DVT with the number of risk factors](image)

- Positive result (%): 11% for 0 risk factors, 24% for 1 risk factor, 36% for 2 risk factors, 50% for 3 risk factors, 100% for >3 risk factors.

Frequency of VTE Risk Factors

US Hospital Patients

Number of risk factors

Hospital discharges (%)

≥1 78%
≥2 49%
≥3 19%
≥4 6%
≥5 1%

VTE: A Large Population at Risk

Prevalence of VTE risk in a typical hospital population: percentage of patients with at least 3 VTE risk factors

All hospitalized
All major surgery
Abdominal surgery
Vascular surgery
Neurosurgery
Urology
Cardiac surgery

19% of hospitalized patients have at least three risk factors
Up to 70% in some wards

Patients with at least three risk factors (%)

VTE Risk Assessment Protocol (RAP)

<table>
<thead>
<tr>
<th>Risk Factors</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obesity</td>
<td>2</td>
</tr>
<tr>
<td>Malignancy</td>
<td>2</td>
</tr>
<tr>
<td>Abnormal coagulation</td>
<td>3</td>
</tr>
<tr>
<td>History of thrombosis</td>
<td>3</td>
</tr>
<tr>
<td>Femoral venous line</td>
<td>3</td>
</tr>
<tr>
<td>Transfusion of more than 4 units of red blood cells</td>
<td>2</td>
</tr>
<tr>
<td>Operation lasting more than two hours</td>
<td>2</td>
</tr>
<tr>
<td>Major venous repair</td>
<td>3</td>
</tr>
<tr>
<td>Acute chest injury</td>
<td>2</td>
</tr>
<tr>
<td>Intrabdominal injury</td>
<td>2</td>
</tr>
<tr>
<td>Traumatic brain injury</td>
<td>2</td>
</tr>
<tr>
<td>Spinal fractures</td>
<td>3</td>
</tr>
<tr>
<td>GCS less than 6</td>
<td>5</td>
</tr>
<tr>
<td>Severe lower extremity fracture (long bone)</td>
<td>4</td>
</tr>
<tr>
<td>Pelvic fracture</td>
<td>4</td>
</tr>
<tr>
<td>Spinal cord injury</td>
<td>4</td>
</tr>
</tbody>
</table>

Age in years:
- ≥ 75 = 4 points
- 60 or ≤ 75 = 3 points
- 40 or ≤ 60 = 2 points

Total RAP Score =

Prophylaxis vs TE Disease

- Low Risk – Minor procedure, otherwise healthy
 - No medications; rapid mobilization
- Moderate Risk – Abdominal surgery, thoracic surgery, Medical patient
 - Multiple medical regimens effective
- High Risk – Paraplegic, hemiplegic, pelvic surgery, leg surgery
 - Moderate risk therapy ineffective; more clearly needed
Available Anticoagulants

- Before 1987, only heparin and warfarin were available
- Now,
 - 4 low molecular weight heparins (3 available in US)
 - 1 heparinoid (not available in US)
 - 1 Factor Xa inhibitor
 - 3 direct thrombin inhibitors
 - 1 coumarin derivative
- More to come

Heparin

- Potentiates inactivation of activated enzymes of clotting cascade, via binding to antithrombin III
- Functions as chemical catalyst
- Natural heparin-like molecules on endothelial surfaces make these surfaces antithrombotic in nature
- Commercially available x 50+ years
- Lots of knowledge RE: use of drug
Heparin

- Multiple sources – most commonly used are porcine intestine and bovine lung
- Short-acting (1/2 life c. 1 hour)
- Bioavailability is variable from source to source & from batch to batch
- Monitoring usually considered to be necessary to assess the effect of treatment

Heparin

- Monitoring important to ensure that the desired anticoagulant effect is being achieved; NOT to avoid giving too much heparin!!!!
Heparin

- Multiple studies show that in treatment of thromboembolic disease, failure to achieve anticoagulant effect within 48 hours of beginning treatment with ANY medication increases complication rate by 4-10X
- NO study shows that keeping any monitoring test below a certain level results in decreased bleeding complications

HEPARIN

Treatment Regimens

- Prophylaxis vs. DVT
 - 5000 units SQ BID
 - Doesn’t require monitoring
 - Clearly effective in preventing venous thromboembolism in low & moderate risk patients
 - Doesn’t increase risk of hemorrhage
HEPARIN
Treatment Regimens – pre-1990’s

- Treatment of thromboembolic disease
 - Heparin 5000 unit bolus
 - Continuous infusion at 800-1000 units/hr
 - Measure aPTT @ 6 hours post-bolus
 - Adjust up or down to maintain heparin at 1.5-2.5 x normal aPTT value

HEPARIN THERAPY
Problems - Prophylaxis

- Prophylaxis only effective in low or moderate risk groups; ineffective in patients at high risk of VTE (risk of VTE 35-50%)
 - Lower extremity orthopedic surgery
 - Radical pelvic surgery
 - Paraplegia/quadriplegia
 - Hemiplegia
 - ? Prothrombotic conditions

- Higher dose heparin more effective, but requires monitoring, & risk of bleeding increased
HEPARIN
Problems - Therapy

- Most patients with formed thrombus are relatively heparin resistant
- Generally requires 15-20 units heparin/kg/hour to achieve therapeutic aPTT in VTE patients
- In normal sized adult, often takes several days to get patient therapeutic on heparin

HEPARIN
Problems - Therapy

- If > 48 hours to therapeutic range, risk of complications of Rx rise 4-10x & stay up x 6 months
- Longer to therapeutic causes increased risk of HIT/HITTS
- Longer to therapeutic increases risk of length-of-stay police
HEPARIN THERAPY (VTE)

- Standard of care: Weight based heparin
- Various protocols, but all start at 13-18 units heparin/kg/hr, up to a weight of 100-125 kg
- On these, can achieve therapeutic levels 90-95% of the time within 48 hours
- Still need to get aPTT values in a timely fashion

Low Molecular Weight Heparins

- Higher bioavailability; makes dosing without monitoring a reality (except in renal disease, morbid obesity, cachexia)
- Longer half-life; therefore can be given subcutaneously 1-2x/day
- Much lower (but not 0) risk of de novo thrombocytopenia
- At least as effective for treatment; more effective for high risk prophylaxis than heparin
- Mechanism of action similar to heparin
Low Molecular Weight Heparins - Problems

- More expensive than heparin
- Longer acting, and only partially reversible with protamine
- Renally excreted, making dosing problematic in renal disease
- Cross-reactive with HIT causing antibodies
- Much more effective for prophylaxis if given pre-op
- All carry black box warning vs. use with regional anesthesia

LOW MOLECULAR WEIGHT HEPARINS

- Work best as prophylactic agents when given preoperatively
- Cannot be given in setting of regional anesthesia (incidence of epidural hematomas noted in this setting)
- When given post-op, offer little advantage over prophylactic dose heparin or adjusted dose warfarin for DVT prevention
Low Molecular Weight Heparins (US)

- Enoxaparin (Lovenox®) – Approved for VTE prophylaxis, VTE treatment, acute coronary syndrome
- Dalteparin (Fragmin®) – Same as enoxaparin RE: approvals, except for VTE treatment
- Tinzaparin (Innohep®) – Approved for treatment of VTE
- Ardeparin (Normiflo®) – Not being marketed in US
- All behave similarly, but dosing of each is different

FACTOR Xa INHIBITOR

- Fondaparinux (Arixtra®) – Semisynthetic sulfated pentasaccharide; active moiety of heparin
- Only inhibits factor Xa
- Bioavailability virtually 100%; can be given QD
- No thrombocytopenia seen in trials (does not bind to platelet factor IV)
- Data clearly shows it to be superior to LMWH when given postoperatively, & probably superior to LMWH given preoperatively
Fondaparinux

- Offers possibility of post-op prophylaxis against DVT with same or better efficacy as preop administration of LMWH
- Small but real incidence of wound hematomas (nil if given > 6 hrs post-op); bleeding risk otherwise similar to LMWH
- Avoids problems with administration of drug during regional anesthesia, since can be given after the epidural catheter is pulled
- Approved for treatment of VTE
- Longer prophylactic treatment better than shorter

Direct Thrombin Inhibitors

- Block active site of thrombin
- Inhibit both clot-bound and free thrombin
- More potent inhibitors than heparin
- All are short-acting, IV infusions
Direct Thrombin Inhibitors

- **Lepirudin (Refludan®)**
 - Hirudin derivative
 - Half life 30-40 minutes
 - Problematic in renal disease
 - Not reversible
 - Approved for Heparin-Induced Thrombocytopenia and Thrombosis

Direct Thrombin Inhibitors

- **Argatroban®**
 - Small molecule active site blocker of thrombin
 - Half life 30-40 minutes
 - Problematic in liver disease
 - Not reversible
 - Approved for Heparin-Induced Thrombocytopenia and Thrombosis & for Acute Coronary Syndromes
Direct Thrombin Inhibitors

- Bivalirudin (Angiomax®)
 - Hirudin derivative
 - Short-acting
 - Not reversible
 - Approved for unstable angina/angioplasty

HEPARIN-INDUCED THROMBOCYTOPENIA

Type II - Treatment

- Warfarin alone can lead to increased thrombosis
- Low molecular weight heparin has significant cross-reactivity with anti-heparin antibodies, and can lead to recurrent thrombocytopenia and thrombosis
- Ancrod, prostacyclin analogues ineffective
Current Recommendations

- In OR: Unfractionated heparin
- In ICU – Treatment of VTE: Unfractionated heparin, weight-based
 - Reversibility in these settings critical, as is short duration of action

Current Recommendations

- Acute coronary syndromes
 - Enoxaparin superior to dalteparin, which is marginally superior to unfractionated heparin
- Differences small
- In institutions with aggressive intervention programs, unfractionated heparin remains drug of choice for most cardiologists
Current Recommendations

On Ward, Rx of VTE:
- Unfractionated heparin, weight based
- Low molecular weight heparin, weight based (treatment dosing)
 - Enoxaparin, dalteparin, tinzaparin probably equivalent, at appropriate doses

Either can be used; I prefer the latter, except in renal insufficiency
- Decreased incidence of HIT
- Decreased incidence of subtherapeutic values
- Decreased problems with laboratory monitoring of therapy
Current Recommendations

- **Outpatient Treatment of VTE**
 - Low molecular weight heparin/fondaparinux
 - Enoxaparin, Dalteparin, Tinzaparin Fondaparinux equivalent
 - Converting to oral agent problematic (mostly because of health care systems)
 - Financial disincentive for physicians to do this

Current Recommendations – VTE Prophylaxis

- **Low Risk** – No medications; early ambulation
- **Moderate Risk (Medical or Surgical)** – Enoxaparin 40 mg SQ QD or Dalteparin 5000 units SQ QD; ± pneumatic compression
Current Recommendations – VTE Prophylaxis (Controversial)

- Avoid SQ heparin except in severe renal dysfunction
- SQ heparin equally effective as LMWH in these situations; however,
 - In prophylaxis, no need to take risk of HIT
- ?? – extra cost of LMWH outweighed by cost of only a few cases of HIT

Current Recommendations – VTE Prophylaxis

- High Risk Patients
 - Fondaparinux 2.5 mg SQ QD (especially in the perioperative setting)
 - Enoxaparin 30 mg SQ Q 12h
 - Adjusted dose warfarin (begin 1 day pre-op and maintain INR at 1.5-2)
 - Adjusted dose heparin – to maintain midpoint aPTT at 1.5 x control
Current Recommendations – HIT/HITTS

- Lepirudin if patients don’t have renal disease
- Argatroban if patients don’t have liver disease
- AVOID warfarin alone!!

WARFARIN

- Goal - Prevention of further thromboembolism, while minimizing risk of bleeding as much as possible
WARFARIN

Monitoring

- International Normalized Ratio (INR) should be used for all monitoring of warfarin therapy
 - INR=(PTI)^ISI; ISI is a fudge factor that corrects for differences in reagents between different laboratories
- INR Values: 2-3 for most patients; 2.5-3.5 for prosthetic valves; > Higher for hypercoagulation disorders (controversial)
- Except ---

Warfarin – 2

- LMWH preferred for Rx of oncology patients with VTE
- ?? APLA syndrome patients - ? Rx with LMWH
WARFARIN Acute Treatment

- Can start warfarin once therapeutic on heparin or LMWH
- Delayed onset of action; need to be covered with parenteral anticoagulant for a *minimum* of 5 days, or until INR is therapeutic for a minimum of 48 hours, WHICHEVER IS LONGER!!!

WARFARIN Acute Treatment

- No Loading Dose
- Effect of dose of warfarin seen 36 hours later
- Multiple meds affect sensitivity to warfarin
- Final adjustment needs to be done as an outpatient, but should get into therapeutic range before leaving hospital
WARFARIN

Duration of Therapy

- Post-operative DVT’s, no risk factors
 - 6 weeks warfarin therapy
- First DVT, no risk factors for thrombosis, NOT post-op
 - 6 months warfarin therapy; ? Indefinite Rx, ? at lower INR range
- Second or greater DVT
 - Indefinite warfarin unless major contraindication

Future Agents (Not yet approved)

- Melagatran/Ximelagatran – Direct thrombin inhibitors; 2nd drug is orally active, & could potentially replace warfarin
 - Not approved on initial go-round @ FDA (approved in Europe)
- ? Other direct thrombin inhibitors for uses other than HIT
- ? Orally active heparin/LMWH derivatives