

- Look for size and shape of RBC's esp for variability in sizes & shapes
- Is there polychromasia present? (Often implies reticulocytosis)
- Is there a dimorphic population of RBCs?
- Are there platelet and WBC abnormalities?

12

Anemia – Normocytic (MCV 80-100)

- Most commonly caused by anemia of chronic disease
- Early iron deficiency often causes normocytic anemia as well
- Anemia of chronic investigation particular hazard of ICU patients

17

• Combined deficiencies

	MCV
Macrocytic	>100 fl
Normocytic	80-100 fl
Microcytic	< 80 fl

Marrow Failure Normocytic Anemia (MCV 80-100 fl)						
Type of <u>anemia</u>	<u>Blood film</u>	<u>Ferritin</u>	<u>Fe</u>	<u>TIBC</u>	Marrow <u>Fe stores</u>	
Chronic disease*	Normochromic, normocytic	NI or ↑	↓	↓	NI or ↑, clumped	
	Mild anisocytosis, hypochromia	NI or ↓	t	↑	absent	
*including anemia due to renal disease and AIDS						

∎5

Macrocytosis of Alcoholism

- 25-96% of alcoholics
- MCV elevation usually slight (100-110 fl)
- Minimal or no anemia
- Macrocytes round (not oval)
- Neutrophil hypersegmentation absent
- Folate stores normal

Megaloblastic Hematopoiesis

- Marrow failure due to: disrupted DNA synthesis & ineffective hematopoiesis
- Giant precursors and nuclear:cytoplasmic dyssynchrony in marrow
- Neutrophil hypersegmentation & macroovalocytes in blood
- Anemia (and often leukopenia & thrombocytopenia)
- · Almost always due to Cbl or folate deficiency

33

Blood smear critical to assess these

Anemia – Clinical Consequences

- General
 - Slowly developing anemia is well tolerated
 - Rapidly developing anemia is not well tolerated
 - No specific hemoglobin level necessary for optimized oxygen delivery to tissues
 - People with congenital abnormal hemoglobins tolerate much lower levels than most

44

Anemia – Clinical Consequences 4

- Other vitamins/minerals need to be repleted for erythropoietin to work
- Not clear that increasing hemoglobin level increases survival or prevents other complications of underlying disease

47

Anemia – Clinical Consequences 2

- Oxygen delivery increases linearly with increasing hemoglobin
- Blood viscosity increases exponentially, & flow decreases exponentially, with increasing hemoglobin
- Optimum oxygen delivery occurs with hemoglobin level c. 150 grams/liter
- Significant decreases in oxygen delivery don't happen until hemoglobin is > 180 grams/liter

Anemia – Summary 2

- If vitamins/minerals replete & patient still anemic, erythropoietin can be used to raise hemoglobin level
- ? If raising hemoglobin level alters underlying disease process