

Hb S

- Hb S tends to aggregates (valine)
- Deoxygenated Hb S in solution forms gel causes elongation of the cells and resulting in a distorted red cell
- Sickling is also influenced by amount and type of Hb in the cell
- 2,3 DPG

Clinical Laboratory SCD

- Chronic hemolytic anemia
- Steady state Hb 5-11gm/dl
- Normochromic anemia
- Reticulocytosis
- Normal MCHC
- Decrease amount of erythropoeitin relative to degree of anemia

able 1. Sickle Hemoglobi	inopathies: Neonatal Scr	eening and Diag	nostic Test Re	sults.	
	Neonatal screening			es by 2 years	
	results	MCV ²	Hb A ₂ ³ (%)	Hb F (%)	Hb F distribution
isorder					
SS	FS	N or I	<3.6	<25	Heterocellular
SC	FSC	N or D	NA	<15	NA
S beta-thal	FSA or FS 7	N or D	>3.6	<25	NA
S betaº-thal	FS	D	>3.6	<25	Heterocellular
S delta/betathal	FS	D	<2.5	<25	Heterocellular
S-HPFH	FS	N or D	<2.5	<25	Pancellular
b = hemoglobin, thal = thalass	semia, N = normal, I = increas	ed, D= decreased			

Natural History of SCD

- FIRST DECADE
- Infection/Sepsis
- Cerebral infarct
- ACS
- Arthropathy
- Cholelithiasis
- Priapism
- Poor growth /Development

- SECOND
 DECADE
- Chronic organ
 damage
- Renal disease
- Leg ulcers
- Neurologic disease
- Sudden death

Functional asplenia

- The red pulp of the spleen is hypoxic and and acidotic and favors sickling .
- Sickle cells lack the deformability necessary for passage through the splenic sinus gaps.
- Sluggish flow, increased viscosity and low O2 and pH lead to chronic congestion of the red pulp and results in multiple microinfarcts and hemorrhages.

Splenic Sequestration

- Occurs when there is rapid enlargement of the spleen accompanied by an acute fall in hemoglobin.
- The mechanism for the triggering of these episodes are not clear but be accompanied by viral illnesses
- 10-20% of children with sickle cell disease between the ages of 6 mons to 3 years will have at least one episode.

- Affects as many as 15-25% of patients with SS disease (rare in Hgb SC)
- Hemorrhage or thrombosis
- Peak age for cerebral thrombosis and infarction is 7-10 years
- Subarachnoid hemorrhage more common in the second decade.

Patho-physiology of Stroke in Sickle Cell Disease:

- Intimal and medial hyperplasia and proliferation secondary to damaged endothelial from sickle cells.
- Narrowing or complete occlusion of the cerebral vessels; anterior and and/or middle cerebral arteries.
- Multi-vessel involvement is common even in patients will unilateral findings.

Transcranial Doppler (TCD) in SCD

- A measure of cerebral blood flood velocity
- Abnormal TCD predicts increased risk of stroke in SCD.
- Velocity in excess of 200cm/sec is associated with increased risk of stroke.

Prevention of Stroke in SCD

- STOP I (Stroke Prevention) Study :A randomized clinical trial of patients with abnormal TCD, compared chronic transfusion to reduce Hb S level ≤ 30% to a non transfusion arm.
- There were 92% fewer strokes in the transfusion arm compared to the non transfused arm.

Indications: Chronic Transfusion

- Primary Stroke Prevention
- Prevention of recurrent stroke
- Intractable pain
- Symptomatic anemia
- Pulmonary Hypertension/Sickle Cell Chronic Lung
- Recurrent Splenic Sequestration

Complications of Transfusion

- Transfusion reactions
- Iron Overload
- Alloimmunization
- Hypersplenism
- Hyperviscosity
- Transfusion transmitted infections

Pharmacological Agents that Stimulate Fetal Hemoglobin Production • 5-Azacytidine

- Hydroxyurea
- Butyrate
- Erythropoietin
- Combinations

Why is Fetal Hemoglobin Beneficial in Sickle Cell Disease

- Hb F interferes with polymerization of Hb S in vitro.
- Infants with SCD do not have complications during the first 6 months of life.
- SCD patients from Saudi Arabia and India with high Hb F levels have milder clinical disease.
- CSSCD showed an inverse correlation between Hb F levels and clinical severity

- -40% decrease in mortality in patients treated with HU for at least 3 yrs
- · -28% of all deaths were pulmonary

Clinical Manifestation

 When Hb F levels fall which are normal offset by increased Hb A levels

Findings:

Extra-medullary hematopoeisis

Hemolysis

Hyperbilirubinemia

Congestive heart failure.

Types of Beta Thalassemias

Туре	Hb levels	Clinical Features
β ⁰ β ⁰	Hb F 100%	Tx dependent
Thal Major		
β+ β ⁰	Hb F	+/- Tx
Thal intermedia	40-80%	
β+ β+	Hb F	+/- Tx
Thal intermedia	30-95%	

Complications of Disease

- Bone expansion
- Short stature
- Osteoprosis/Arthopathy
- Delayed puberty
- Endocrinopathy/Hypopituitary
- -IDDM, Hypothyrodism, Hypo
- -Testicular and ovarian failure
- Cardiomyopathy
- · Pulmonary hypertension

Therapy	
Transfusion:	
Mainstay of the therapy to correct the anemia.	
Suppress the ineffective erythropoiesis	
Prevent excessive marrow expansion	

When to transfuse ?

- Thal intermedia Hb levels 6-9 gm/dl
- Thal Major Hb levels 3-4 gm/dl

Hb Level that are insufficient and that lead to cardiovascular compromise, impaired linear growth and excessive marrow expansion.

lpha American Society of Hematology $lpha$ -Thalassemia Syndromes						
α Gene Map	α Genotype	α Clinical Syndrome				
-8-8-	Normal	Normal				
	Heterozygous α - Thal - 2 (also called)	Silent Carrier of α Thalassemia				
<u></u>	Heterozygous $lpha$ - Thal - 1 (also called)	lpha - Thalassemia Trait				
=====	Homozygous α - Thal - 2 (homozygous)	$\boldsymbol{\alpha}$ - Thalassemia Trait				
	Compound Heterozygous α - Thal - 1 & 2 ($\frac{also called}{a^{c}/a^{o}}$)	Hb - H Disease				
=	Homozygous α - Thal - 1	Hydrops Fetalis				

Genotype	Clinical findings	Hemoglobin
αα/αα β ^Α β ^Ε	Normal Red cells slightly hypochromic	A + E Hb E 25-30%
-α/αα β ^λ β ^ε	Normal Hypochromic red cells	A + E Hb E 20-25%
$/\alpha \alpha \beta^{A} \beta^{E}$	Normal Hypochromic red cells	A + E Hb E 17-20%
$/-\alpha\alpha\beta^{A}\beta^{B}$	Hb E/Hb H disease (see below)	A + E + Bart's Hb E about 14%
$-\alpha/\alpha\alpha\beta^{E}\beta^{E}$	As for homozygous Hb E (mild anemia)	E + trace Bart's
$/-\alpha \beta^{\dot{E}}\beta^{E}$	Severe thalassemia intermedia	E + F + Bart's Hb E 80%, HbF 13

<u>I ne interaction of HD \vdash and α thalassemia</u> results in a variety of genotypes (see table below presence of α thalassemia reduces the amount of Hb E usually found in Hb E heterozygotes.

