Molecular Diagnosis

of Inherited Diseases

TOPICS

- Definition and uses of genetic tests
- Tests for “Gene level” alterations
 - Structure of the gene
 - Types of mutations
 - Tests for “recurrent” mutations
 - “Mutation Scanning” tests
 - Interpretation of positive and negative results
 - Ethical and additional considerations in testing

Introduction

- Define A Genetic Test
- Discuss settings in which one may use genetic tests.
- List types of genetic alterations one may test for.
- Factors which affect test choice.

Molecular Genetic Tests

- Genetic test:
 - Analysis of human
 - DNA, RNA, chromosomes, proteins, metabolites
 - to detect heritable disease-related
 - genotype, mutation, phenotype, or karyotype
 - for clinical purposes.

Genetic Disease

- All disease?
- Types of genetic diseases:
 - Chromosomal disorders.
 - Contiguous gene syndromes.
 - Single gene disorders.
 - Distinct phenotype.
 - Different genes same phenotype.
 - “Multigene” disorders.

Genetic diagnosis: “Purpose”

- Diagnostic Testing
 - Symptomatic individual
- Screening
 - Entire population or high risk group (e.g., CF, “Ashkenazi panel”)
- Presymptomatic Testing
 - Usu. Positive fam hx., e.g., Huntington’s.
- Prenatal testing
 - Chromosomal disorders, single gene disorders, RhD.
Genetic diagnosis: “Purpose”

- Preimplantation Genetic Diagnosis
 - Test for multiple possible disorders on one or two cells!
- Pharmacogenetic testing
 - e.g., TPMT & thiopurine drugs
- Testing for susceptibility to environmental agents
 - e.g., Paraoxonase & organophosphate toxicity
 - ABUSE: (e.g., genetic testing of railroad workers w/ carpal tunnel syndrome!)

Test Choice

- Type of genetic Δ to be detected
 - Chromosomal abnormality
 - Conventional cytogenetics; FISH; CGH, etc
 - Gain or loss of genetic material:
 - Conventional cytogenetics; FISH; CGH, etc
 - Known mutation(s) in one or more genes:
 - Many methods: e.g., PCR-RFLP, SSP, probes, etc.
 - Unknown mutation in one or more genes:
 - “Mutation Scanning” Techniques (e.g., sequencing, “SSCP”, dHPLC), etc.
 - Direct DNA/RNA sequencing

Test Choice

- Cost
 - Material costs, Personnel costs
 - Automated tests have lower personnel costs per test
 - Reduce overall costs by “multiplexing”
 - E.g., use of arrays to test multiple genes, chromosomes, etc.
- Sample requirements
 - E.g., conventional cytogenetics - live cells
- Turnaround time
 - E.g., prenatal, PGD – need for rapid turnaround

Gene Level Alterations

- Structure of genes.
- Types of mutations, and potential consequences.
- Types of tests for “known” or “recurrent” mutations (inc. expanded repeats).
 - Interpretation of positive and negative tests for “known” mutations.
- Tests for “unknown” mutations.
 - Interpretation of positive and negative tests for “unknown” mutations.

Test Choice

- Test Validity:
 - Sensitivity, Specificity
 - Analytical vs. Clinical validity
 - Analytical validity
 - Correctly identifies presence/absence of mutation
 - Clinical Validity:
 - Correctly identifies presence/absence/risk of disease.
 - Positive & negative predictive values
Structure of Genes

- **UTR**
 - 5' UTR
 - 3' UTR
- **Exon**
- **Intron**
- **Splice sites**
- **Promoter**
- **Enhancer**

Missense Mutations

- Depending upon specific AA change
 - Loss of function:
 - e.g., Hb S, Hemochromatosis
 - "Gain of Function":
 - e.g., Factor V Leiden
 - No functional effect:
 - e.g., KVLQT1 P448R

Types of mutations

- **Missense Mutations**
 - Depending upon specific AA change
 - Loss of function:
 - e.g., Hb S, Hemochromatosis
 - "Gain of Function":
 - e.g., Factor V Leiden
 - No functional effect:
 - e.g., KVLQT1 P448R
- **Missense mutations**
 - When is a missense mutation significant?
 - Known structural and functional domain
 - Evolutionarily conserved residue
 - Independent occurrence in unrelated patients
 - Absent in large control sample
 - Novel appearance & cosegregation w/disease
 - Phenotype in pedigree
 - In vitro loss of function
 - Restoration of function by WT protein.

Point Mutations

<table>
<thead>
<tr>
<th>Missense</th>
<th>Nonsense</th>
<th>Silent</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATC</td>
<td>TTC</td>
<td>TTC</td>
</tr>
<tr>
<td>TTC</td>
<td>AGC</td>
<td>AGC</td>
</tr>
<tr>
<td>TGC</td>
<td>TGC</td>
<td>TGC</td>
</tr>
<tr>
<td>GAG</td>
<td>GAG</td>
<td>GAG</td>
</tr>
<tr>
<td>CTA</td>
<td>CTA</td>
<td>CTA</td>
</tr>
<tr>
<td>TAT</td>
<td>TAT</td>
<td>TAT</td>
</tr>
</tbody>
</table>

Sickle Cell Anemia Mutation

- **Hb S**
- **Hb F**
- **Glu**
- **Leu**
- **Stop**
- **Cys**
Nonsense Mutations

- Amino Acid codon to “Stop”
- Three stop codons
 - UAA, UAG, UGA
- Truncated protein
 - Protein truncation test
- E.g., Beta° Thalassemia in Sardinia
 - Codon 24, CAG to TAG

Deletions

- Complete/partial gene deletions
 - Duchenne Muscular Dystrophy
 - Alpha thalassemia
- Multiple genes (“contiguous gene syndromes”)
 - DiGeorge Syndrome chr 22q11.2
 - TSC2-PKD1 Chr. 16p13
 - WAGR syndrome 11p112-13

Splice Junction Mutations

- GT/AG rule
 - AAGGTAAGT.../... YYYYYYYYYYNCGAG
- Loss of splice site
 - Intron incorporated in mRNA
- Creation of novel splice sites
 - >100 mutations
 - e.g., Hemoglobin E
- Hemoglobin E
- Missense mutation and splice site error
- Both normal and new splice site use
 - Hemoglobinopathy (missense) and thalassemia (reduced Hb) features

Hemoglobin E (Glu26Lys)

- GGT GGT GAG GCC BetaA
- GGT GGT AAG GCC BetaE

Other mutations

- Cap-site Mutants
- Mutations in initiation codons
- Creation of a new initiation codon
- Mutations in termination codons
- Polyadenylation/cleavage signal mutations

Insertions

- Tay Sachs Disease
 - 4bp insertion in Ashkenazi Jews

- Hemophilia A
 - L1 insertion in FVIII gene (1% of patients)

Frame-Shift Mutations

- Codon = 3 bp
- Insertion/deletion not multiple of 3bp
 - Change of reading frame - entire protein altered.
 - e.g., Tay Sachs 4 bp insertion, BRCA1 185 delAG, BRCA2 6174delIT, etc.
 - Blood group O (1 bp deletion)

Unstable Trinucleotide Repeats

- Expansion tandem repeats of trinucleotides.
 - Promoter/5'UTR
 - Fragile X Syndrome (CGG)n 5'UTR
 - Exon
 - Huntington's syndrome (CAG)n polyglutamine
 - SCA type 1 (CAG)n polyglutamine
 - Intron
 - Friedreich's Ataxia (GAA)n intron
 - 3'UTR
 - Myotonic dystrophy (CTG)n 3'UTR
“Known” Mutations

- **“Recurrent” Mutations**
 - Same mutation in multiple unrelated families
 - Single mutation assoc. w/phenotype
 - E.g., Sickle cell disease; Factor V Leiden, Hb. C
 - Limited # of mutations in gene assoc. w/phenotype.
 - E.g., Hemochromatosis C282Y and H63D; MEN-2, Achondroplasia, etc.
 - Ethnic group-specific mutations
 - E.g., BRCA1, BRCA2, “Ashkenazi” panel, CF.
 - Known mutation in family.

- Tests for “known” mutations
 - Many rapid, sensitive/specific methods available.
 - Test choice - laboratory preference
 - workflow, available equipment, kit availability, patent issues, etc.).
 - Detect
 - heterozygotes (one mutant allele)
 - compound heterozygotes (two different mutations)
 - Homozygotes (two alleles with same mutation).

Tests for recurrent mutations

- Choice of mutation tested for
 - Clinical syndrome
 - E.g., Thrombosis – Factor V Leiden and Prothrombin mutation
 - Medullary thyroid carcinoma – MEN2 mutations etc.,
 - Hemochromatosis, test for HFE mutations.
 - Ethnicity
 - E.g., Ashkenazi Panel.
 - Family History.

- Tests for recurrent mutations
 - Results:
 - Mutation tested for either not present, heterozygous, or homozygous.
 - Positive results
 - Unambiguous
 - Technical false positive rare (most methods)
 - Positive predictive value, penetrance, etc. usu known
 - (Exceptions: HFE mutations – penetrance not agreed upon; and family-specific mutation).

Recurrent Mutations

- Methods
 - PCR-RFLP
 - Allele-specific probes/primers
 - Direct sequencing/“Minisequencing”/Pyrosequencing.
 - Molecular Beacons/TaqMan probes.
 - Oligonucleotide ligation assay.
 - Mass spectroscopy-based methods.

- Tests for recurrent mutations
 - Negative Result:
 - “Residual risk” [for mutation, not disease] determined by two factors:
 - Risk of having mutation prior to testing
 - Sensitivity of mutation panel for patient’s ethnic group.
Recurrent mutations: Cystic Fibrosis

- CF: AR; disease when 2 mutated CFTR alleles.
 - 1:3,300 Caucasians;
 - 1 in 9,500 Hispanics;
 - <1 in 50,000 Native Africans and Asians.
 (Af. Am. 1:15K; As. Am. 1:32K)
- NIH consensus statement:
 - Offer testing to all planning pregnancy.

CFTR Negative results: Screening

- Caucasian Couple, no family hx. both test (-):
 - Carrier rate = 0.04
 - Population incidence = 0.0016*0.25 = 1 in 2500
 - “Residual Risk” = 0.04*(1-.96) = 0.0024
 - Probability of affected child = 0.000000576*0.25~ 1 in 6900
- Hispanic couple:
 - Carrier rate = 0.022
 - Population incidence = 1 in 8000
 - “Residual Risk” = 0.022*(1-.57) = .00946
 - Probability of affected child = 1 in 45,000

Recurrent mutations: Cystic Fibrosis

- NIH Consensus statement:
 - Offer testing to all planning pregnancy.
- BUT: 900 CFTR MUTATIONS AND COUNTING!!!!!!!
- Solution:
 - Test for most common mutations (currently 25)
 - i.e., test for recurrent mutations w/c will detect most cases in population.

CFTR Negative results: Screening

- Asian Couple:
 - Carrier rate = 0.011
 - Probability of affected child ~ 1: 32,000
 - “Residual Risk” = 0.011*(1-0.3) = .0077
 - Probability of affected child ~ 67500

CFTR: Incidence, Carrier, Mutation Rates

<table>
<thead>
<tr>
<th>Group</th>
<th>Incidence</th>
<th>Carrier freq.</th>
<th>%ΔF508</th>
<th>% other “common”</th>
<th>% group specific</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caucasian</td>
<td>1:3,300</td>
<td>1/29</td>
<td>13</td>
<td>18</td>
<td>85</td>
<td>95%</td>
</tr>
<tr>
<td>Hispanic</td>
<td>1:8-9000</td>
<td>1/46</td>
<td>46</td>
<td>14</td>
<td>13</td>
<td>57%</td>
</tr>
<tr>
<td>Ashkenazi</td>
<td>1:3,300</td>
<td>1/29</td>
<td>30</td>
<td>67</td>
<td>97</td>
<td>97%</td>
</tr>
<tr>
<td>Native Am.</td>
<td>1:1500 – 570</td>
<td>0</td>
<td>25</td>
<td>69</td>
<td>94</td>
<td>94%</td>
</tr>
<tr>
<td>African Am.</td>
<td>1:15,300</td>
<td>1:60-65</td>
<td>48</td>
<td>4</td>
<td>23</td>
<td>75%</td>
</tr>
<tr>
<td>Asian Am.</td>
<td>1:32,100</td>
<td>1:90</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>30%</td>
</tr>
</tbody>
</table>

Expanded trinucleotide repeats

- Southern Blotting Methods
 - Gold Standard
 - Labor intensive, need for high quality DNA
- PCR-based Methods
 - Rapid
 - Amplification failure of very long repeats.
Expanded Repeats-Huntington Disease

(CAG)_{10-26} (CAG)_{27-35} (CAG)_{36-41} (CAG)_{42-121}

Normal At risk for expansion Variable penetrance Affected

Tests for unknown mutations

“Mutation Scanning Methods”

Mutation Scanning Methods

- Ideal mutation scanning method:
 - Screen large DNA sequence
 - 100% sensitivity and specificity
 - Unambiguously define mutation.
 - Minimum # of steps
 - High throughput
 - No special equipment
 - No dangerous reagents

- No such method
 - Compromise

Mutation Scanning Methods

- Detect difference in physical properties of normal and mutant DNA.
- Directly Sequence genomic DNA
- Reverse Transcribe RNA and sequence cDNA
- Test properties of translated protein - using DNA or RNA as starting material.

Mutation Scanning Methods

- Mutation in family not known.
- No recurrent mutations
- Look for mutations in
 - Exons
 - Introns,
 - splice sites,
 - promoters,
 - enhancers ,
 - “locus control region”, etc.
- Of one or more genes.

Mutation Scanning Methods

- Screening “physical properties”
 - Test for altered denaturation profile, or
 - Electrophoretic mobility
 - e.g., SSCP, DGGE, DHPLC, Cleavase fragment length polymorphisms, heteroduplex analysis, dideoxy fingerprinting.
 - Sensitivity varies for different genes/mutations
 - Need to use multiple conditions
 - One datapoint per gene segment evaluated
 - Screen for presence, not identity of mutation.
Mutation Scanning Methods

- **Direct Sequencing**
 - Screen for presence and identity of mutation
 - Genomic DNA sequencing
 - Bidirectional sequencing (both strands)
 - Two datapoints per base evaluated
 - Usu. multiple exons tested
 - Splice-site mutations may be missed
 - RNA sequencing
 - Use RNA from cells w/ express gene (no introns)
 - Splicing alterations detected
 - Caution: "nonsense mediated decay"
 - RNA w/ early nonsense mutation is degraded by cells
 - Only normal RNA will be sequenced

- **Automated fluorescent sequencing**
 - Widely available
 - DNA segment amplified by PCR
 - PCR product used as template for "cycle sequencing"
 - Need to inspect electropherograms
 - Verify "base calling", heterozygous bases

How to Interpret a Test Result

- **Pathogenic Mutation**
- **No Variation**
- **Variation of unknown clinical significance**

Mutation Scanning Tests

- **Mutation detected**
 - Previously reported mutation
 - Known to be cause of disorder
 - Known to be "neutral variation"
 - New mutation:
 - Type likely to be assoc. w/disorder
 - Frame-shift mutation, start "ATG" mutation, "Stop codon" misense mutation, nonsense mutation, splice-junction mutation, non-conservative missense in active site,
 - Type likely to be "neutral":
 - E.g., no change in amino acid, and not cryptic splice site
 - Type w/c may or may not be assoc. w/ disorder
 - E.g., non-conservative missense mutation, in region not known to be active site, etc.

Mutation Scanning Tests

- **Two mutations (Recessive Disorders)**
 - Test parents to ensure two mutations in trans (separate alleles) not in cis (same allele).
- **No mutation detected.**
 - Residual risk depends on individual gene
 - Some genes - mainly point mutations, easily detected.
 - Other genes: deletions, rearrangements, intronic alterations, etc., common (e.g., Neurofibromatosis1, BMPR2 - need special tests e.g., tests for gene dosage, etc.).
Molecular Genetic Testing

Additional considerations

Genetic Testing: Additional Considerations

- Screening vs Genetic testing of “index” case
 - With “index” case, it is known that tested individual has clinical disease; only value of negative test is that you know that it cannot be used to screen relatives.
- Locus heterogeneity:
 - Multiple genes causing same syndrome
- Variable “penetrance”:
 - May or may not depend on specific mutation.
- Variable expressivity
 - Variable severity of disease.
 - May or may not depend on specific mutation.

Benefits Vs. Risk of Testing:

- Availability of treatment/prevention
- Pre-clinical manifestations.
- Discrimination:
 - Insurance
 - Employment
 - Confidentiality

Factors affecting utility of genetic testing

<table>
<thead>
<tr>
<th>Increased utility</th>
<th>Decreased utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>High morbidity and mortality of disease</td>
<td>Low morbidity and mortality of disease</td>
</tr>
<tr>
<td>Effective but imperfect treatment</td>
<td>Highly effective and acceptable treatment (i.e., no harm is done by waiting for clinical disease to treat patient)</td>
</tr>
<tr>
<td>High predictive power of genetic test (high penetrance)</td>
<td>Poor predictive power of the genetic test (low penetrance)</td>
</tr>
<tr>
<td>High cost or onerous nature of screening methods</td>
<td>Availability of inexpensive, acceptable, and effective surveillance methods (or need for surveillance whether or not one has increased genetic risk)</td>
</tr>
<tr>
<td>Preventive measures that are expensive or associated with adverse effects</td>
<td>Preventive measures that are inexpensive, efficacious, and highly acceptable - e.g., folate supplementation.</td>
</tr>
</tbody>
</table>

Ethics
- Implications for patients and relatives.
 - e.g., identical twins; siblings;
 - paternity issues -

Legal issues
- New York State Civil Right Law:
 - Need for informed consent
 - Genetic testing only (not phenotypic testing)
 - Standards for informed consent in civil rights law, section 79-l
 [http://assembly.state.ny.us/leg/?cl=17&a=12].