Molecular Diagnosis

of Inherited Diseases

TOPICS

- Definition and uses of genetic tests
- Tests for "Gene level" alterations
 - Structure of the gene
 - Types of mutations
 - Tests for "recurrent" mutations
 - "Mutation Scanning" tests
 - Interpretation of positive and negative results
 - Ethical and additional considerations in testing

Introduction

- Define A Genetic Test
- Discuss settings in which one may use genetic tests.
- List types of genetic alterations one may test for.
- Factors which affect test choice.

- Genetic test:
 - Analysis of human
 - DNA, RNA, chromosomes, proteins, metabolites
 - to detect heritable disease-related
 - genotype, mutation, phenotype, or karyotype
 - for clinical purposes.

Genetic Disease

- All disease?
- Types of genetic diseases:
 - Chromosomal disorders.
 - Contiguous gene syndromes.
 - Single gene disorders.
 - Distinct phenotype.
 - Different genes same phenotype.
 - "Multigene" disorders.

Genetic diagnosis: "Purpose"

- Preimplantation Genetic Diagnosis
 - Test for multiple possible disorders on one or two cells!
- Pharmacogenetic testing
 - e.g., TPMT & thiopurine drugs
- Testing for susceptibility to environmental agents
 - e.g., Paraoxonase & organophosphate toxicity
 - ABUSE: (e.g., genetic testing of railroad workers w/ carpal tunnel syndrome!)

Test Choice

- Test Validity:
 - Sensitivity, Specificity
 - Analytical vs. Clinical validity
 - Analytical validity
 - Correctly identifies presence/absence of *mutation*
 - Clinical Validity:
 - Correctly identifies presence/absence/risk of *disease*.
 - Positive & negative predictive values

Point Mutations	

	ATC	TTC	AGC	TGC	GAG	CTA	TAT
	Leu	Phe	Ser	Cys	Glu	Leu	Tyr
Missense	ATC	TTA	AGC	TGC	GAG	CTA	TAT
	Leu	Leu	Ser	Cys	Glu	Leu	Tyr
Nonsense	ATC Leu	TTC Phe	AGC Ser	TGA Stop	GAG	CTA	TAT
Silent	ATC	TTC	AGC	TGC	GAG	CT <mark>G</mark>	TAT
	Leu	Phe	Ser	Cys	Glu	Leu	Tyr

Missense mutations

• When is a missense mutation significant?

- known structural and functional domain
- evolutionarily conserved residue
- independent occurrence in unrelated patients
- absent in large control sample
- novel appearance & cosegregation w/disease phenotype in pedigreee
- In vitro loss of function
- restoration of function by WT protein.

- Amino Acid codon to "Stop"
- Three stop codons
 UAA, UAG, UGA
- Truncated protein
 - Protein truncation test
- E.g., Betaº Thalassemia in Sardinia
 - Codon 24, CAG to TAG

Deletions

- Complete/partial gene deletions
 - Duchenne Muscular Dystrophy
 - Alpha thalassemia
- Multiple genes ("contiguous gene syndromes")
 - DiGeorge Syndrome chr 22q11.2
 - TSC2-PKD1 Chr. 16p13
 - WAGR syndrome 11p112-13

Splice Junction Mutations

-GT/AG rule

- AAGGTAAGT.......//....YYYYYYYYYNCAGG

- -Loss of splice site
 - intron incorporated in mRNA
- Creation of novel splice sites
 - >100 mutations
 - e.g., Hemoglobin E

Frame-Shift Mutations

- Codon = 3 bp
- insertion/deletion not multiple of 3bp
 - Change of reading frame entire protein altered.
 - e.g., Tay Sachs 4 bp insertion, BRCA1
 185 deIAG, BRCA2 6174deIT, etc.
 - blood group O (1 bp deletion)

Other mutations

- Cap-site Mutants
- Mutations in initiation codons
- Creation of a new initiation codon
- Mutations in termination codons
- Polyadenylation/cleavage signal mutations.

Unstable Trinucleotide Repeats

• Expansion tandem repeats of trinucleotides.

- promoter/5'UTR
 - Fragile X Syndrome (CGG)n 5'UT
- Exon
 - Huntington's syndrome (CAG)n polyglutamine
 - SCA type 1 (CAG)n polyglutamine
- Intron
 - Friedrich's Ataxia (GAA)n intron
- 3'UTR
 - Myotonic dystrophy (CTG)n 3'UT

"Recurrent" Mutations

- Same mutation in multiple unrelated families
 - Single mutation assoc. w/phenotype

 E.g., Sickle cell disease; Factor V Leiden, Hb. C
 - Limited # of mutations in gene assoc. w/ phenotype.
 - E.g., Hemochromatosis C282Y and H63D; MEN-2, Achondroplasia, etc.
 - Ethnic group-specific mutations

 E.g., BRCA1, BRCA2, "Ashkenazi" panel, CF.
- Known mutation in family.

Recurrent Mutations

Methods

- PCR-RFLP
- Allele-specific probes/primers
- Direct sequencing/"Minisequencing"/ Pyrosequencing.
- Molecular Beacons/TaqMan probes.
- Oligonucleotide ligation assay.
- Mass spectroscopy-based methods.

Choice of mutation tested for

- Clinical syndrome
 - E.g., Thrombosis Factor V Leiden and Prothrombin mutation
 - Medullary thyroid carcinoma MEN2 mutations etc.,
 - Hemochromatosis, test for HFE mutations.
- Ethnicitiy
 - E.g., Ashkenazi Panel.
- Family History.

Tests for recurrent mutations

- Results:
 - Mutation tested for either not present, heterozygous, or homozygous.
- Positive results
 - Unambiguous
 - Technical false positive rare (*most* methods)
 - Positive predictive value, penetrance, etc. usu known
 - (Exceptions: HFE mutations penetrance not agreed upon; and family-specific mutation).

• Negative Result:

- "Residual risk" [for mutation, not disease] determined by two factors:
 - Risk of having mutation prior to testing
 - Sensitivity of mutation panel for patient's ethnic group.

- CF: AR; disease when 2 mutated CFTR alleles.
 - -1:3,300 Caucasians;
 - 1 in 9,500 Hispanics;
 - <1 in 50,000 Native Africans and Asians. (Af.Am. 1:15K; As. Am. 1:32K)
- NIH consensus statement:
 Offer testing to all planning pregnancy.

Group	Incidence	Carrier freq.	%ΔF508	% other "common"	% group- specific	Sensit ivity
Caucasian	1:3,300	1/29	70	13		80- 90%
Hispanic	1/8-9000	1/46	46	11		57%
Ashkena zim	1:3,300	1/29	30	67		97%
Native Am.	1:1500 – 3970		0	25	69	94%
African Am.	1:15,300	1:60-65	48	4	23	75%
Asian Am.	1:32,100	1:90	30	0	0	30%

CFTR Negative results: Screening

- Caucasian Couple, no family hx. both test (-):
 - Carrier rate = 0.04
 - Population incidence = 0.0016*0.25 = 1 in 2500
 - "Residual Risk" = 0.04*(1-.94) = 0.0024 (Each Parent)
 - probability of affected child = 0.00000576*0.25~ 1 in . 69000
- Hispanic couple:
 - Carrier rate = 0.022
 - Population incidence ~ 1 in 8-9000
 - "Residual Risk" = 0.022*(1-.57) = .00946
 - probability of affected child ~ 1 in 45,000

CFTR Negative results: Screening

• Asian Couple:

- Carrier rate = 0.011
 - probability of affected child ~ 1: 32,000
- "Residual Risk" = 0.011*(1-0.3) = .0077
 - probability of affected child ~ 67500

- Gold Standard
- Labor intensive, need for high quality DNA
- PCR-based Methods
 - Rapid
 - Amplification failure of very long repeats.

Mutation Scanning Methods

- Mutation in family not known.
- No recurrent mutations
- Look for mutations in
 - Exons
 - Introns,
 - splice sites,
 - promoters,
 - enhancers ,
 - "locus control region", etc.
- Of one or more genes.

- Ideal mutation scanning method:
 - Screen large DNA sequence
 - 100% sensitivity and specificity
 - Unambiguously define mutation.
 - Minimum # of steps
 - High throughput
 - No special equipment
 - No dangerous reagents
- No such method
 - Compromise

Mutation Scanning Methods

- Detect difference in physical properties of normal and mutant DNA.
- Directly Sequence genomic DNA
- Reverse Transcribe RNA and sequence cDNA
- Test properties of translated protein using DNA or RNA as starting material.

- Screening "physical properties"
 - Test for altered denaturation profile, or electrophoretic mobility
 - e.g., SSCP, DGGE, DHPLC, Cleavase fragment length polymorphisms, heteroduplex analysis, dideoxy fingerprinting.
 - Sensitivity varies for different genes/mutations
 - Need to use multiple conditions
 - One datapoint per gene segment evaluated
 - Screen for presence, not identity of mutation.

Mutation Scanning Methods

Direct Sequencing

- Screen for presence and identity of mutation
- Genomic DNA sequencing
 - Bidirectional sequencing (both strands)
 - Two datapoints per base evaluated
 - usu. multiple exons tested
 - splice-site mutations may be missed
- cDNA sequencing
 - Use RNA from cells w/c express gene (no introns)
 - Splicing alterations detected
 - Caution: "nonsense mediated decay"
 - RNA w/ early nonsense mutation is degraded by cells
 - Only normal RNA will be sequenced

Direct Sequencing Methods

- Automated fluorescent sequencing
 - widely available
 - DNA segment amplified by PCR
 - PCR product used as template for "cycle sequencing"
 - need to inspect electropherograms
 - verify "base calling", heterozygous bases

Mutation Scanning Tests

Mutation detected

- Previously reported mutation
 - Known to be cause of disorder
 - Known to be "neutral variation"
- New mutation:
 - Type likely to be assoc. w/disorder
 - frame-shift mutation, start "ATG" mutation, "Stop codon" misense mutation, nonsense mutation, splice-junction mutation, non-conservative missense in active site,
 - Type likely to be "neutral"
 - e.g., no change in amino acid, and not cryptic splice site
 - Type w/c may or may not be assoc. w/ disorder
 - E.g., non-conservative missense mutation, in region not known to be active site, etc.

- Two mutations (Recessive Disorders)
 - Test parents to ensure two mutations in *trans* (separate alleles) not in *cis* (same allele).
- No mutation detected.
 - Residual risk depends on individual gene
 - some genes mainly point mutations, easily detected.
 - Other genes: deletions, rearrangements, intronic alterations, etc., common (e.g., Neurofibromatosis1, BMPR2 - need special tests e.g., tests for gene dosage, etc.).

Molecular Genetic Testing

Additional considerations

Genetic Testing: Additional Considerations

• Screening vs Genetic testing of "index" case

- With "index" case, it is known that tested individual has clinical disease; only value of negative test is that you know that it cannot be used to screen relatives.
- Locus heterogeneity:
 - Multiple genes causing same syndrome
- Variable "penetrance"
 - May or may not depend on specific mutation.
- Variable expressivity
 - Variable severity of disease.
 - May or may not depend on specific mutation

Benefits Vs. Risk of Testing:

- Availability of treatment/prevention
- Pre-clinical manifestations.
- Discrimination:
 - Insurance
 - Employment
 - Confidentiality

Modified from: BMJ: 322: 1054; April 28, 2001.

Factors affecting utility of genetic testing

Increased Utility

- High morbidity and mortality of the disease
- Effective but imperfect treatment

High predictive power of genetic test (high penetrance)

- High cost or onerous nature of screening and surveillance methods
- Preventive measures that are expensive or associated with adverse effects

Decreased utility

- Low morbidity and mortality of disease
- Highly effective and acceptable treatment (i.e., no harm is done by waiting for clinical disease to treat patient)
- Poor predictive power of the genetic test (low penetrance)
- Availability of inexpensive, acceptable, and effective surveillance methods (or need for surveillance whether or not one has increased genetic risk)
- Preventive measures that are inexpensive, efficacious, and highly acceptable - e.g., folate supplementation.

Genetic Testing: Additional Considerations

Ethics

- implications for patients *and* relatives.
 - e.g., identical twins; siblings;
 - paternity issues -
- Legal issues
 - New York State Civil Right Law:
 - Need for informed consent
 - Genetic testing only (not phenotypic testing)
 - Standards for informed consent in civil rights law, section 79-I
 - [http://assembly.state.ny.us/leg/?cl=17&a=12].