Qualitative and Quantitative Platelet Disorders

Jeffrey S. Jhang, M.D.

<table>
<thead>
<tr>
<th>Platelet vs. Coagulation Bleeding</th>
<th>Findings</th>
<th>Coagulation</th>
<th>Platelet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petechiae</td>
<td>Rare</td>
<td>Common</td>
<td></td>
</tr>
<tr>
<td>Hematomas and Hemarthroses</td>
<td>Common</td>
<td>Rare</td>
<td></td>
</tr>
<tr>
<td>Delayed Bleeding</td>
<td>Common</td>
<td>Rare</td>
<td></td>
</tr>
<tr>
<td>Bleeding cuts</td>
<td>Minimal</td>
<td>Persistent</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td>Male</td>
<td>Women</td>
<td></td>
</tr>
<tr>
<td>Mucosal</td>
<td>Minimal</td>
<td>Typical</td>
<td></td>
</tr>
</tbody>
</table>

N.B. Some platelet disorders are associated with thrombosis (HIT, TTP)

Laboratory Tests

- Automated Cell Counter
 - Platelet Count
 - Mean Platelet Volume
 - Platelet Distribution
- Smear morphology
- Coagulation
 - PT, aPTT, Fib, TT
- Bleeding Time
- Aggregometry
- vWD
 - Ristocetin Cofactor
 - vWF:Ag
 - FVIII:C
 - Multimers

Platelet Signaling

EDTA

Forward Scatter: Size
Side Scatter: Complexity
Case

22 year old student athlete undergoes a routine preoperative physical exam and laboratory studies prior to right knee arthroscopy; he has no significant past medical history; no bleeding or family bleeding history; he takes no medications; physical exam is unremarkable

WBC 5.0, Hct 45%, Plt 20K, smear next slide

Pseudothrombocytopenia
Anti-coagulant dependent agglutinins associated with EDTA
Re-rerun with citrate or heparin tube

Platelet Morphology

Bernard-Soulier
Gray Platelet Syndrome

Real or Spurious Platelet Count: Schistocytes

Platelets 200K, but platelets rarely seen on smear

- To screen for inherited platelet dysfunction (e.g. vWD)
- Done under standardized conditions
 - 40 mmHg
 - Two small punctures on volar surface
 - Absorbed every 30 sec
 - Measured by time in minutes
 - Should not be done if plt<50K, anemia or uremia
- Mainly affected by platelet number and function, hematocrit
- There is no evidence that the bleeding time predicts bleeding
- no correlation between bleeding time and visceral bleeding
Bleeding Time Prolonged

- Congenital
- Drugs (e.g. antiplatelet drugs +/- ASA)
- Alcohol
- Uremia
- Hyperglobulinemias
- Fibrin/fibrinogen split products
- Thrombocythemia
- Cardiac Surgery

Interpretation

- Evaluate the slope of aggregation; both primary and secondary wave
- Evaluate the extent of aggregation
- Low dose ADP: two waves; high dose a single wave
- Epi biphasic in 80% of normal
- Collagen acts by releasing ADP so only a single wave
- Ristocetin antibiotic that makes vWF bind platelets and induces aggregation; normal tracing does not exclude vWD

Aggregometry

- Purpose: used to detect abnormalities in platelet function
- Principle: an aggregating agent is added to platelet rich plasma in a cuvette; as the platelets aggregate, the light transmission increases
- Specimen: platelet rich plasma prepared from citrate whole blood with test completed within 3 hours of the collection
- Procedure: soft spin to prepare platelet rich plasma prepared; hard spin to prepare platelet poor plasma (blank)

Interpretation

- Evaluate the slope of aggregation; both primary and secondary wave
- Evaluate the extent of aggregation
- Low dose ADP: two waves; high dose a single wave
- Epi biphasic in 80% of normal
- Collagen acts by releasing ADP so only a single wave
- Ristocetin antibiotic that makes vWF bind platelets and induces aggregation; normal tracing does not exclude vWD

Accumetrics

- Fibrinogen coated beads
- Agonist (e.g. ADP)
Evaluate as two groups

- **Quantitative**
 - Production, Destruction, Sequestration

- **OR**

- **Qualitative**
 - Adhesion, Aggregation, Secretion, Other

Quantitative

- **Production**
 - Reduced
 - Megakaryocytes
 - Infiltration (e.g. tumor)
 - Aplasia (e.g. chemicals)
 - Congenital (e.g. WAS)

- **Ineffective**

 - Megaloblastic anemia, myelodysplasia, ETOH

- **Destruction**
 - Immune
 - Autoantibody e.g. ITP
 - Alloantibody
 - NAT, HIT
 - Consumption
 - DIC
 - TTP
 - Mechanical

- **Sequestration**
- **Hemodilution**
- **Real or Spurious?**

Case

- 75 year-old man with no significant past medical history s/p bowel resection for carcinoma. He spiked a temperature of 103. Blood and urine cultures are positive for GNR. He is noted to have petechiae on his legs. His venipuncture sites are oozing. No organomegaly.

- Data: WBC 25K with left shift, Hct 30%, Plts 20K. PT 21s, PTT 120s, Fib 80, D-Dimer>20, schistocytes

- DDX: ITP, TTP/HUS, DIC, HIT

Case

- 35 year-old F previously in good health, developed URI sx's 1 wk PTA. A few days later, felt "hot" with headache, and developed bruising on ant shins. Went to urgicare, sent home. Then was called back for admission in the evening, due to PLT 5

- PE: T 99, VS stable, marked ecchymosis on B/L extremities, especially LE, a few on body.

- Lab:
 - PLT 5, WBC 7.7, H/H=11.3/34.3
 - PT/PTT 12.4/30.7, fib 327
 - TB/DB 2.6/0.4, AST/ALT 65/13
 - BUN 11, Cr 0.5
 - Urine: hemoglobin 2+, RBC 15, WBC 0-2, Prot. neg
 - PB smear: schistocytes > 5/HPF
 - ANA, Speckled nuclearplasmic patterns

- DDX: ITP, HELLP, HUS, DIC, HITetc.

TTP In Brief

Pentad

- Microangiopathic hemolytic anemia (vesel narrowing) with schistocytes (mechanical injury to RBCs)
- Severe Thrombocytopenia
- (systemic PLT aggregation)
- Neurologic abnormalities
- (CNS ischemia)
- Acute renal insufficiency
- (renal ischemia)
- Fever
- Associated with thrombosis
- Plasmapheresis w FFP infusion
- Prednisone
Qualitative

- Inherited
 - Bernard-Soulier
 - Glanzmann’s
 - Storage pool disease (Chediak-Higashi, Wiscott-Aldrich, Hermansky-Pudlak, Gray Platelet Syndrome)

- Acquired
 - Drugs (e.g. ASA, ADP, Iib/IIa)
 - Uremia, Post-bypass
 - Primary marrow disorders; MDS, Dysproteinemias

Inherited

- Adhesion
 - Bernard-Soulier

- Aggregation
 - Glanzmann’s

- Secretion
 - E.g. Gray Platelet Syndrome

Glanzmann’s Thrombasthenia

- Rare Condition
- Inherited absence of GPIIb/IIIa (AR)
- Severe Bleeding manifestations
 - GPIIb/IIIa a key platelet glycoprotein required for aggregation
- Absence of aggregation with ADP, Epi, Collagen
- Normal ristocetin
Bernard-Soulier

- Rare inherited bleeding disorder
- Lack of GPIb which is necessary for the formation of the hemostatic plug by binding to subendothelial von Willebrand factor
- Aggregation with ADP, Epi and collagen; absent ristocetin

von Willebrand’s Disease

- Inherited bleeding disorders
- Absent or decreased levels of vWF or lack of large and medium sized multimers
- Work up includes vWF:Ag level, FVIII:C activity, Ristocetin Cofactor Activity, Platelet Aggregation studies

Thrombocytopenias

- Common
- Abnormality in the release reaction
- Storage Pool Disease (no ADP in granules)
- Release defect (defects in mechanism of release)
- Resembles same pattern as aspirin

Hermansky-Pudlak

- 21 month old male with bruisability and bleeding
- Albino features
- Oculomotor nystagmus
- Delayed development
- Tyrosinase-positive oculocutaneous albinism (Ty-pos OCA), bleeding diathesis, and systemic complications associated to ceroid-lipofuscin–like lysosomal storage disease.

Case

- 33 year old woman with menorrhagia
- History of epistaxis since childhood
- Cousin with similar problems
- Aspirin for headaches; no other meds
- PT, PTT, TT, Platelets normal count
- Blood smear platelet morphology normal
Differential Diagnosis

• Inherited
 – Bernard-Soulier
 – Glanzmann’s
 – Storage Pool Defect
 – vWD
• Acquired
 – DIC, MDS, uremia, drugs, dysproteinemia

Type I vWD

• Most frequently encountered
• All polymeric forms are present, but to a decreased level
• Bleeding time usually prolonged; can be normal if mild deficiency

vWD Lab Workup

• Bleeding Time
• Ristocetin Cofactor (functional)
• Ristocetin Aggregation
• vWF Ag (quantitative)
• Factor VIII:C
• Multimeric Analysis

Type II vWD

• Type IIA
 • Amount synthesized may be normal
 • Failure to form intermediate or large multimers
 • BT usually prolonged
 • FVIII decreased or normal
• Type IIB
 • Less common
 • May not respond to DDAVP
 • Largest multimers are absent
 • Concentration too low to induce aggregation

Type III

• Severe bleeding disorder
• Very low levels of all multimers; low vWF:Ag, FVIII:C, Ristocetin Cofactor activity
<table>
<thead>
<tr>
<th>Test</th>
<th>IA</th>
<th>IIA</th>
<th>IIB</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>BT</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>FVIII</td>
<td>D</td>
<td>D or N</td>
<td>D or N</td>
<td>D</td>
</tr>
<tr>
<td>vWAg</td>
<td>D</td>
<td>N or D</td>
<td>N or D</td>
<td>D</td>
</tr>
<tr>
<td>Rist Cof</td>
<td>D</td>
<td>D</td>
<td>D or N</td>
<td>D</td>
</tr>
<tr>
<td>Rist Aggr</td>
<td>D or N</td>
<td>D</td>
<td>I</td>
<td>D</td>
</tr>
<tr>
<td>Multimer</td>
<td>N</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
</tbody>
</table>