Proteins

Michael A. Pesce, Ph.D
Department of Pathology
New York-Presbyterian Hospital
Columbia University Medical Center

Protein Trivia

- The most abundant organic molecule in cells (50% by weight)
- About 300 proteins have been identified in plasma
- Proteins can have a MW of greater than 1 million
- Albumin is the most abundant protein in humans and contains 550 amino acids
Structure of Amino Acids

ELECTROPHORESIS
Separation of a charged particle in an electric field

Rate of migration depends on:

- Charge of the molecule
- Size and shape of the molecule
- Voltage
- Support medium
- pH and ionic strength of the buffer
Optimizing electrophoresis

• Optimal electrophoretic separations must balance speed and resolution
 – Higher voltage increases speed, but heat causes evaporation of the buffer and may denature proteins
 – Higher ionic strength (buffer) increases conductivity.

Serum Protein Electrophoresis

• Apply samples 1 uL to the agarose gel
• Electrophoresis 21°C, 650v
• Dry 54°C
• Stain - Acid Blue
• Destain - Acetic Acid
• Dry 63°C
Serum protein electrophoresis

- **Albumin**
 - Most abundant protein in plasma (approximately half of total protein)
 - Synthesized in liver
 - $t_{1/2} = 15-19$ days
 - Principal functions
 - Maintaining fluid balance
 - Transport Protein
Clinical significance of albumin

- Hyperalbuminemia is rare and of no clinical significance
- Hypoalbuminemia
 - Increased loss (nephrotic syndrome)
 - Decreased synthesis (nutritional deficit, liver failure)
- Analbuminemia markedly decreased rare
- Bisalbuminemia, dimeric albumin with equal intensities
Alpha 1 Proteins

Alpha-1-Lipoprotein-HDL

Alpha-1-Antitrypsin-

protease inhibitor that binds to and inactivates trypsin
- Deficiency leads to destruction of the alveolar walls and is associated with pulmonary deficiency
- Deficiency also seen in cirrhosis
- Alpha-1-antitrypsin is an acute phase protein and is increased in acute episodes of tissue damage

Other \(\alpha_1 \) proteins

- \(\alpha_1 \)-Acid glycoprotein (orosomucoid) and alpha-1 anti-chromotrypsin are acute phase proteins

- \(\alpha_1 \)-Fetoprotein (AFP)
 - Principal fetal protein, used to screen for fetal abnormalities (neural tube defects)
Alpha-2-Proteins

Alpha-2-Macroglobulin - 720 Kda –
Large non-immunoglobulin in plasma
Synthesized in the liver
 Increased levels in nephrosis because its large size prevents passage into the urine. Also there is an increase in synthesis.
 – It is not an acute phase protein

(α2) Haptoglobin

• Synthesized in the liver
• Binds to, and preserves, hemoglobin
• Low Haptoglobin levels in intravascular hemolysis
• Increased haptoglobin levels because it is an acute phase
BETA PROTEINS

Transferrin - 77 Kda –
Iron transport protein, also binds copper
 Increased in iron deficiency anemia, pregnancy and estrogen therapy
 – Decreased in acute inflammation due to decrease synthesis of transferrin by the liver
 – Negative acute phase protein

Other (β) proteins

• Beta-1 Lipoprotein 2750Kda
• Increased in nephrosis and Type II hypercholesterolemia
• C3 and C4 migrate in the β region
• Compliment proteins are decreased in genetic deficiencies, and increased in inflammation. C3 is a late acute phase protein. C3 may not be detected if the sample is kept at room temperature
• IgA
γ Region

- Includes immunoglobulins (IgG, IgA, IgM, IgD and IgE)

- Single sharp peak indicates a paraprotein and is associated with a monoclonal gammopathy

- A small band is indicative of MGUS

Gamma Region

IgG migrates in the gamma and beta regions and is increased in infections, autoimmune and liver disease

IgM migrates in the gamma region

IgA migrates in the alpha-2, beta and gamma regions

CRP is the most sensitive indicator of an acute phase reaction (inflammation, trauma, infection)
• Other ACPs include \(\alpha_1 \)-acid glycoprotein, haptoglobin, and ceruloplasmin.
Nephrotic Syndrome
- Decreased albumin
- Increased α_2-macroglobulin
- Decreased gamma globulins

Hepatic cirrhosis
- Decreased albumin (synthesis)
- Increased gamma globulins (polyclonal gammopathy)
- "β-γ bridging"
Immediate response pattern

Decrease in albumin
Increase in haptoglobin and alpha 1-proteins

Monoclonal gammopathy

Albumin decreased
Sharp peak in gamma region
Serum Proteins Sample 12 12-06-2002 12:52:57.12

<table>
<thead>
<tr>
<th>Fraction</th>
<th>g/dl</th>
<th>g/dl Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albumin</td>
<td>4.1</td>
<td>3.4-4.4</td>
</tr>
<tr>
<td>Alpha 1</td>
<td>0.3</td>
<td>0.2-0.4</td>
</tr>
<tr>
<td>Alpha 2</td>
<td>0.8</td>
<td>0.6-1.1</td>
</tr>
<tr>
<td>Beta</td>
<td>1.0</td>
<td>0.6-1.3</td>
</tr>
<tr>
<td>Gamma</td>
<td>1.2</td>
<td>0.8-1.8</td>
</tr>
<tr>
<td>Total</td>
<td>7.9</td>
<td>6.7-8.6</td>
</tr>
<tr>
<td>Ratio</td>
<td>1.45</td>
<td></td>
</tr>
</tbody>
</table>

Serum Proteins Sample 22 03-07-2005 12:17:08.22

<table>
<thead>
<tr>
<th>Fraction</th>
<th>g/dl</th>
<th>g/dl Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albumin</td>
<td>3.6</td>
<td>3.0-4.4</td>
</tr>
<tr>
<td>Alpha 1</td>
<td>0.2</td>
<td>0.2-0.4</td>
</tr>
<tr>
<td>Alpha 2</td>
<td>0.7</td>
<td>0.5-1.1</td>
</tr>
<tr>
<td>Beta</td>
<td>0.6</td>
<td>0.5-1.0</td>
</tr>
<tr>
<td>Gamma</td>
<td>4.3</td>
<td>3.8-4.8</td>
</tr>
<tr>
<td>Total</td>
<td>8.6</td>
<td>6.7-9.6</td>
</tr>
<tr>
<td>Ratio</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>Fraction</td>
<td>g/dl</td>
<td>g/dl Range</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>------------</td>
</tr>
<tr>
<td>Albumin</td>
<td>3.9-</td>
<td>3.4</td>
</tr>
<tr>
<td>Alpha 1</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Alpha 2</td>
<td>5.6</td>
<td>0.8</td>
</tr>
<tr>
<td>Beta</td>
<td>1.2+</td>
<td>0.6</td>
</tr>
<tr>
<td>Gamma</td>
<td>2.2+</td>
<td>0.8</td>
</tr>
<tr>
<td>Total</td>
<td>7.1</td>
<td>6.7</td>
</tr>
</tbody>
</table>

Ratio

- ALB: 0.69
IMMUNOFIXATION ELECTROPHORESIS

- Dilute samples with saline
- Apply sample 1 uL to the agarose gel
- Electrophoresis 21°C, 650 v
- Apply antisera
- Blot and dry 50°C
- Stain - Acid Violet
- Destain - Acetic Acid
- Dry 60°C
MULTIPLE MYELOMA

Multiple Myeloma - proliferation of a single clone of plasma cells that produces a monoclonal protein

Annual Incidence - 4 in 100,000
Number of cases per year - 13,000
Represents 1% of all malignant diseases
Median age at diagnosis - 65 years
Median survival - 3 years
DIAGNOSTIC CRITERIA FOR MULTIPLE MYELOMA

- Bone Marrow Plasmacytosis >10% of Plasma Cells
- Serum Monoclonal Protein
- End Organ Damage
 - Lytic Bone Lesions
 - Renal Insufficiency
 - Anemia
 - Increased Calcium

Clinical Laboratory in Multiple Myeloma

- **Biochemical** -
 - Serum monoclonal proteins
 - Polyclonal Immunoglobulin Decreased
 - Proteinuria, Bence-Jones Protein present in urine
 - BUN, Creatinine ↑
 - Calcium ↑, N

- **Hematological** -
 - Hemoglobin Decreased
 - Anemia - Normochromatic, Normocyte
 - ESR Increased
 - Rouleaux Formation
Frequency of Monoclonal Proteins in Multiple Myeloma

- IgG - 58%
- IgA - 24%
- Light Chains - 15%
- Biclonal - 2%
- IgD - 1%
Monoclonal Gammopathy of Undetermined Significance

Defined as the presence of a serum monoclonal protein at low levels

- **Number of cases per year**: 750,000-1,000,000
- **54% Men** **46% Women**
- **Occurs in 2% of persons over 50 years, 3% over 70 years**
- **Median age at diagnosis**: 72 years
- **Median survival**: 12 years

Criteria

- Serum monoclonal protein <3.0 g/dL
- Stability of monoclonal protein during long term follow-up
- <10% Plasma cells in bone marrow
- None or a small amount of Bence-Jones protein in urine
- Absence of lytic bone lesions
- Serum calcium, BUN, creatinine - Normal
- Hemoglobin - Normal
CLINICAL COURSE OF 241 PATIENTS WITH MGUS

- M Protein >3.0 g/dL, No Myeloma (23) 24%
- No Increase in M Protein (46) 19%
- Developed Myeloma & Unrelated Diseases (59) 47%
- Died of Unrelated Causes (173) 47%

Distribution Frequency of Monoclonal Proteins in MGUS

- IgG 73%
- IgM 14%
- IgA 11%
- Biclonal 2%
<table>
<thead>
<tr>
<th>Fraction</th>
<th>g/dl</th>
<th>g/dl Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albumin</td>
<td>3.6</td>
<td>3.6 - 8.0</td>
</tr>
<tr>
<td>Alpha 1</td>
<td>0.6</td>
<td>0.5 - 0.7</td>
</tr>
<tr>
<td>Alpha 2</td>
<td>1.0</td>
<td>0.8 - 1.1</td>
</tr>
<tr>
<td>Beta</td>
<td>1.0</td>
<td>0.8 - 1.0</td>
</tr>
<tr>
<td>Gamma</td>
<td>1.1</td>
<td>0.8 - 1.0</td>
</tr>
<tr>
<td>Total</td>
<td>7.1</td>
<td>6.7 - 8.6</td>
</tr>
</tbody>
</table>

Ratio:
- A/G: 1.92

Comments:
BANDS MISTAKEN FOR MONOCLONAL IMMUNOGLOBULINS

<table>
<thead>
<tr>
<th>BAND</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha-2-Macroglobulin</td>
<td>Nephrotic syndrome</td>
</tr>
<tr>
<td>Hemoglobin-haptoglobin</td>
<td>Hemolysis</td>
</tr>
<tr>
<td>Beta-1-Lipoprotein</td>
<td>Hyperlipidemia</td>
</tr>
<tr>
<td>Fibrinogen</td>
<td>Inadequate clot</td>
</tr>
<tr>
<td>C-Reactive Protein</td>
<td>Acute inflammation</td>
</tr>
<tr>
<td>Immune complex pattern</td>
<td>Inflammation</td>
</tr>
</tbody>
</table>

![Image showing a gel electrophoresis pattern with bands labeled](image-url)
<table>
<thead>
<tr>
<th>Fraction</th>
<th>g/dl</th>
<th>g/dl Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albumin</td>
<td>3.2-</td>
<td>3.6</td>
</tr>
<tr>
<td>Alpha 1</td>
<td>0.4+</td>
<td>0.8</td>
</tr>
<tr>
<td>Alpha 2</td>
<td>1.4+</td>
<td>0.8</td>
</tr>
<tr>
<td>Beta</td>
<td>0.5+</td>
<td>0.8</td>
</tr>
<tr>
<td>Gamma</td>
<td>1.1</td>
<td>0.8</td>
</tr>
<tr>
<td>Total</td>
<td>7.0</td>
<td>6.7</td>
</tr>
</tbody>
</table>

Ratio
A/G 0.84