Hematopoietic Stem Cells, Stem Cell Processing, and Transplantation

Joseph (Yossi) Schwartz, MD Director, Hemotherapy and Stem Cell Processing Facility E-mail: js2745@columbia.edu

Identification of Hematopoietic Stem Cells

- In vivo bone marrow transplantation experiments: CFU-S and long-term reconstitution
- In vitro tissue culture assays: LTC-IC, CAFC, blast colonies
- Cell surface antigens: CD34+, thy1lo, c-kit+, rhodamine 123 lo, CD38-, lineage-

Sources of Donors

Syngeneic donor

Allogeneic donor

Autologus donor

Syngeneic Transplants Disadvantages: Most patients don't have an identical twin Infectious disease transmission No Graft vs. Leukemia (GVL) No Graft vs. Tumor (GVT) Advantages: Graft free from disease Reduced graft rejection Reduced graft vs host disease (GVHD)

Allogenic Transplants Disadvantages: Donor must be HLA compatible Some patients don't have HLA matched family members

- Anonymous donor registries: NMDP, Cord Blood Banks
- ◆ Graft vs. Host Disease (GVHD)
- Infectious disease transmission

Advantages:

- Graft free from disease
- Graft vs. Leukemia (GVL)
- ♦ Graft vs. Tumor (GVT)

Autologous Transplants Disadvantages: Graft may contain tumor cells or other abnormal cells Insufficient cells: aplastic anemia No Graft vs. Leukemia (GVL) No Graft vs. Tumor (GVT) Advantages: Readily available for patients without HLA identical donors No infectious disease transmission Reduced peri-transplant morbidity and mortality

- ← (2) Peripheral Blood Stem Cells
- Collected by apheresis following hematopoietic growth factor "mobilization" and/or chemotherapy
 - FDA approved hematopoietic growth factors: Granulocyte colony stimulating factor (G-CSF), Granulocyte/macrophage stimulating factor (GM-CSF), Erythropoietin (Ep), Interleukin-11 (IL-11)

Cell Types for Transplantation

- (3) Cord Blood Stem Cells
 - Advantages:
 - •Collection has no risks for mother or infant
 - Readily available, anonymous banks, family donation
 - Disadvantages:
 - •Low cell dosages may limit to small recipients
 - Availability of HLA-matched donor
 - Multiple collections impossible

Problems to be overcome: All Transplants

- Myeloablative regimens very toxic
 - High peri-transplant morbidity and mortality
 - Infectious complications
 - Bleeding
- Cells had to be infused immediately
- Large volume, including donor plasma
- Too few cells
 - small donor (child, baby) to larger recipient (larger child, adult)

Problems to be overcome: Allo Transplants

- Large number of contaminating red blood cells (300-400 mL)
 - ♦ ABO/Rh incompatibility
 - Infusion of incompatible red cells with donor marrow
 - Hemolytic transfusion reation
 - +Hypotension and renal failure
 - Threat of hemolysis precluded transplant across ABO barriers
- Histocompatibility
 - High risk of GVHD with mismatches

Problems to be overcome: Auto Transplants

- Insufficient cells in bone marrow failure
- Tumor cell contamination of the graft which could preclude cure
- Cryopresestruction needed to preserve stem cells from collection to reinfusion post-myeloablative therapy.

"Mini-Transplants" = Low Dose Preparative Regimens

- Advantages:
 - Less peri-transplant morbidity and mortality
 - Increased GVL and GVT
- Disadvantages:
 - May not irradicate tumor completely
 - Increased GVHD
 - May need to be augmented with donorderived lymphocyte infusions

- T-cell depletion
 - Allows engraftment of HLA-mismatched or haploidentical matches
 - Greater risk of graft rejection
- Tumor purging
 - ◆Pharmacologic agents, 4 HC

CD 34+ cell selection

- Effective therapeutic dose 1 to 5 X 10⁶ cells/Kg
- Higher doses result in faster engraftment
- Eliminates lymphocytes $\rightarrow \downarrow$ GVHD in allo grafts
- Eliminates tumor cells in autologous grafts

Storage

- BM, buffy coats as long as 9 d at 4 degrees
- Cryoprotectants: DMSO, HES, Glycerol
- Rate of freezing
- Cell concentration (3-7 x 10⁸ cells/ml)
- Storage conditions (vapor or liquid phase)

Quality Control

- 1-3 x 10⁸ MNC/kg correlates w/engraftment
- CFU-GM correlates with engraftment
- CD34 correlates with CFU-GM; Effective therapeutic dose - 1 to 5 X 10⁶ cells/Kg
- Viability
- Sterility, Tumor cell contamination
- Engraftment, gold standard

Bone Marrow Transplantation Can Cure:

- Leukemia
- Lymphoma
- Multiple Myeloma
- Genetic Diseases: Sickle Cell
 Disease, Thalassemia, Fanconi's
 Anemia, Immunodeficiency Syndromes
- Solid Tumors: Brain tumors, ovarian cancer?, breast cancer?

- Problem of tumor cell contamination in the graft
- HDC/PBPCT has a beneficial effect on response rates as well as EFS & OS
- Tandem transplant appears even better
- CD34 selection
- PBPC must be collected early

GVHD Prevention

- Immune-prophylaxis
 - Cyclosporine/methotrexate gold standard
 - Tacrolimus/methotrexate equivalent
 - Single agent not considered standard of care
- T Cell Depletion
 - ◆Ex vivo-abrogates GVHD
 - ♦ In vivo-ATG and Campath 1H
 - Relapse and rejection an issue

Summary

- BMT can cure leukemia, lymphoma, myeloma, solid tumors, and genetic diseases
- BMT works because stem cells removed from the donor "engraft" in the recipients bone marrow.

Summary

- Bone marrow, peripheral blood, and cord blood are all sources of transplantable hematopoietic stem cells
- Donors can be syngeneic, allogeneic or autologous
- Stem cell processing labs can customized stem cell grafts for the specific needs of the patient

