Proteins
Michael A. Pesce, Ph.D
Director of the Specialty Laboratory
New York-Presbyterian Hospital
Clinical professor of Pathology
Columbia University Medical Center

Learning Objectives

• Describe the electrophoresis procedure that is used to separate serum proteins and to identify a monoclonal protein
• Describe how immunofixation electrophoresis (IFE) is used to identify the heavy and light chain of the monoclonal protein
• Be able to identify a monoclonal protein from the serum protein electrophoresis and IFE patterns
• Describe the diagnostic criteria that are used to identify patients with Multiple Myeloma and MGUS

Structure of Amino Acids

ELECTROPHORESIS
Separation of a charged particle in an electric field
Rate of migration depends on:
• Charge of the molecule
• Size and shape of the molecule
• Voltage
• Support medium
• pH and ionic strength of the buffer

Optimizing electrophoresis

• Optimal electrophoretic separations must balance speed and resolution
 – Higher voltage increases speed, but heat causes evaporation of the buffer and may denature proteins
 – Higher ionic strength (buffer) increases conductivity.

Serum Protein Electrophoresis

• Apply samples 1 uL to the agarose gel
• Electrophoresis 21°C, 650v
• Dry 54°C
• Stain - Acid Blue
• Destain - Acetic Acid
• Dry 63°C
Serum protein electrophoresis

Albumin

- Most abundant protein in plasma (approximately half of total protein)
 - Synthesized in liver
 - $t_1/2 = 15-19$ days
- Principal functions
 - Maintaining fluid balance
 - Transport Protein

Clinical significance of albumin

- Hyperalbuminemia is rare and of no clinical significance
- Hypoalbuminemia
 - Increased loss (nephrotic syndrome)
 - Decreased synthesis (nutritional deficit, liver failure)
- Analbuminemia markedly decreased rare
- Bisalbuminemia, dimeric albumin with equal intensities

Alpha 1 Proteins

Alpha-1-Lipoprotein-HDL
Alpha-1-Antitrypsin-
 - Protease inhibitor that binds to and inactivates trypsin
 - Deficiency leads to destruction of the alveolar walls and is associated with pulmonary deficiency
 - Deficiency also seen in cirrhosis
 - Alpha-1-antitrypsin is an acute phase protein and is increased in acute episodes of tissue damage

Other α_1 proteins

- α_1-Acid glycoprotein (orosomucoid) and alpha-1 anti-chromotrypsin are acute phase proteins
- α_1-Fetoprotein (AFP)
 - Principal fetal protein, used to screen for fetal abnormalities (neural tube defects)
Alpha-2-Proteins

Alpha-2-Macroglobulin - 720 Kda –

- Large non-immunoglobulin in plasma
- Synthesized in the liver
- Increased levels in nephrosis because its large size prevents passage into the urine. Also there is an increase in synthesis.
 - It is not an acute phase protein

BETA PROTEINS

Transferrin - 77 Kda –

- Iron transport protein, also binds copper
- Increased in iron deficiency anemia, pregnancy and estrogen therapy
 - Decreased in acute inflammation due to decrease synthesis of transferrin by the liver
 - Negative acute phase protein

** γ Region**

- Includes immunoglobulins (IgG, IgA, IgM, IgD and IgE)
- Single sharp peak indicates a paraprotein and is associated with a monoclonal gammopathy
- A small band is indicative of MGUS

Other (β) proteins

- Beta-1 Lipoprotein 2750Kda
- Increased in nephrosis and Type II hypercholesterolemia
- C3 and C4 migrate in the β region
- Compliment proteins are decreased in genetic deficiencies, and increased in inflammation. C3 is a late acute phase protein. C3 may not be detected if the sample is kept at room temperature
 - IgA

Gamma Region

- IgG migrates in the gamma and beta regions and is increased in infections, autoimmune and liver disease
- IgM migrates in the gamma region
- IgA migrates in the alpha-2, beta and gamma regions
- CRP is the most sensitive indicator of an acute phase reaction (inflammation, trauma, infection)
Acute Phase Reactants

- Other ACPs include α1-acid glycoprotein, haptoglobin, and ceruloplasmin

Nephrotic Syndrome

- Decreased albumin
- Increased α2-macroglobulin
- Decreased gamma globulins

Hepatic cirrhosis

- Decreased albumin (synthesis)
- Increased gamma globulins (polyclonal gammopathy)

 "β-γ bridging"

Immediate response pattern

- Decrease in albumin
- Increase in haptoglobin and alpha 1-proteins

Monoclonal gammopathy

- Albumin decreased
- Sharp peak in gamma region
IMMUNOFIXATION ELECTROPHORESIS

- Dilute samples with saline
- Apply sample 1 uL to the agarose gel
- Electrophoresis 21°C, 650 v
- Apply antisera
- Blot and dry 50°C
- Stain - Acid Violet
- Destain - Acetic Acid
- Dry 60°C

MULTIPLE MYELOMA

Multiple Myeloma - proliferation of a single clone of plasma cells that produces a monoclonal protein

- Annual Incidence - 4 in 100,000
- Number of cases per year - 13,000
- Represents 1% of all malignant diseases
- Median age at diagnosis - 65 years
- Median survival - 3 years

DIAGNOSTIC CRITERIA FOR MULTIPLE MYELOMA

- Bone Marrow Plasmacytosis >10% of Plasma Cells
- Serum Monoclonal Protein
 - End Organ Damage
 - Lytic Bone Lesions
 - Renal Insufficiency
 - Anemia
 - Increased Calcium

CLINICAL LABORATORY IN MULTIPLE MYELOMA

- Biochemical -
 - Serum monoclonal proteins
 - Polyclonal Immunoglobulin Decreased
 - Proteinuria, Bence-Jones Protein present in urine
 - BUN, Creatinine ↑
 - Calcium ↑, N
- Hematological -
 - Hemoglobin Decreased
 - Anemia - Normochromatic, Normocyte
 - ESR Increased
 - Rouleaux Formation

FREQUENCY OF MONOCLONAL PROTEINS IN MULTIPLE MYELOMA

- IgG-58%
- IgA- 24%
- Light Chains- 15%
- Biclonal- 2%
- IgD- 1%
Monoclonal Gammopathy of Undetermined Significance

Defined as the presence of a serum monoclonal protein at low levels
Number of cases per year - 750,000-1,000,000
54% Men 46% Women
Occurs in 2% of persons over 50 years, 3% over 70 years
Median age at diagnosis - 72 years
Median survival - 12 years

CLINICAL COURSE OF 241 PATIENTS WITH MGUS

Distribution Frequency of Monoclonal Proteins in MGUS

Summary

• Serum protein electrophoresis and IFE are used to identify a monoclonal protein in the serum of patients with Multiple Myeloma and MGUS.
• Patients with Multiple Myeloma and MGUS are followed by measuring the concentration of the monoclonal protein using serum protein electrophoresis.