Update on (Approach to) Anemia

How to efficiently and accurately work up the anemic patient

David L. Diuguid, MD
Associate Professor of Clinical Medicine & Clinical Pathology
College of Physicians & Surgeons of Columbia University

Anemia - Definition

- Decrease in the number of circulating red blood cells
- Most common hematologic disorder by far
- Almost always a secondary disorder
- As such, critical for physicians to know how to evaluate/determine cause

Anemia - Causes

- Blood loss
- Decreased production of red blood cells (Marrow failure)
- Increased destruction of red blood cells – Hemolysis

Anemia Workup - Exaggerated

- Iron/TIBC/Ferritin
- Folate/B12
- LDH/Bilirubin
- Haptoglobin/Urine for hemosiderin
- Coombs Test – Direct & indirect
- Hemoglobin electrophoresis
- Rheumatology screen
- Acid hemolysis
- Osmotic fragility
- Rx iron/folate/B12
- Type & Cross
- Transfuse 2-4 units
- GI Consult
- Hematology Consult – Bone Marrow

ANEMIA

Decreased Production | Increased Destruction

Maturational Disorders
Hemolytic Anemias
Hypoproliferative Anemias
Anemia – Basic Workup

- History and Exam
- Reticulocyte count
 - Blood film
 - MCV
 - Ferritin
 - WBC, diff, platelets

Anemia Workup - 1st Test

RETICULOCYTE COUNT!!!

Reticulocyte Count - Absolute Value

- = Retic % x RBC Count
 - eg 0.01 x 5x10^11/l = 5x10^9/l
- Normal up to 1.2x10^11/l (120,000/μl)
- More accurate way to assess body’s response to anemia

Anemia Workup

- If retic count is elevated, following tests not needed:
 - Iron/Iron Binding Capacity/Ferritin
 - Folate/Vitamin B₁₂
 - Acid Hemolysis
 - GI Consult
 - Bone Marrow

Anemia - Peripheral Blood Smear Findings

- Look for size and shape of RBC’s - esp for variability in sizes & shapes
- Is there polychromasia present? (Often implies reticulocytosis)
- Is there a dimorphic population of RBCs?
- Are there platelet and WBC abnormalities?
Mean Corpuscular Volume

- **MCV**
 - Macrocytic: >100 fl
 - Normocytic: 80-100 fl
 - Microcytic: < 80 fl

Anemia Workup - MCV

- Anemia
 - Microcytic
 - Normocytic
 - Macrocytic
 - Iron Deficiency
 - Anemia of Chronic Disease
 - Thalassemias
 - Hemoglobinopathies
 - Sideroblastic Anemia
 - Anemia of chronic disease
 - Early iron deficiency
 - Hemoglobinopathies
 - Primary marrow disorders
 - Combined deficiencies
 - Increased destruction

Anemia – Normocytic (MCV 80-100)

- Most commonly caused by anemia of chronic disease
- Early iron deficiency often causes normocytic anemia as well
- Anemia of chronic investigation – particular hazard of ICU patients
- Combined deficiencies

Anemia of Chronic Disease

- Common
- Develops over 1 to 2 months
- Non-progressive
- Usually mild to moderate
 - but hematocrit < 0.20 occasionally
- 30% mildly microcytic
- WBC, platelets normal or increased
Anemia of Chronic Disease - Pathophysiology

- Cytokine effects (e.g., IL-1, TNF)
- DNA & RNA iron-response elements
- ↓ erythropoietin responsiveness (& production)
- ↓ transferrin synthesis
- ↓ Fe mobilization from macrophages
 - ↓ Fe re-utilization in erythropoiesis
 - ↓ serum Fe despite adequate stores
- ↑ serum ferritin
- Reticulocytopenia
- Anemia

Effects of Interleukin-1 (IL-1)

<table>
<thead>
<tr>
<th>Stimulates</th>
<th>Inhibits</th>
</tr>
</thead>
<tbody>
<tr>
<td>fever</td>
<td>erythropoiesis</td>
</tr>
<tr>
<td>granulopoiesis</td>
<td></td>
</tr>
<tr>
<td>thrombopoiesis</td>
<td></td>
</tr>
<tr>
<td>synthesis of:</td>
<td>synthesis of:</td>
</tr>
<tr>
<td>ferritin</td>
<td>transferrin</td>
</tr>
<tr>
<td>Ig</td>
<td>albumin</td>
</tr>
<tr>
<td>fibrinogen, VIII</td>
<td></td>
</tr>
<tr>
<td>CRP</td>
<td></td>
</tr>
<tr>
<td>IL-2, IL-6</td>
<td></td>
</tr>
</tbody>
</table>

ANEMIA OF CHRONIC DISEASE - Causes

- Thyroid disease
- Collagen Vascular Disease
 - Rheumatoid Arthritis
 - Systemic Lupus Erythematosus
 - Polymyositis
 - Polyarteritis Nodosa
- Inflammatory Bowel Disease
 - Ulcerative Colitis
 - Crohn’s Disease
- Malignancy
- Chronic Infectious Diseases
 - Osteomyelitis
 - Tuberculosis
- Familial Mediterranean Fever
- Renal Failure

Marrow Failure

Normocytic Anemia (MCV 80-100 fl)

<table>
<thead>
<tr>
<th>Type of anemia</th>
<th>Blood film</th>
<th>Ferritin</th>
<th>Fe</th>
<th>TIBC</th>
<th>Fe stores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronic Disease</td>
<td>Normocytic</td>
<td>M or ↑</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>Early Fe deficiency</td>
<td>Mild anemia</td>
<td>M or ↑</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
</tr>
</tbody>
</table>

*Including anemia due to renal disease and AIDS

Anemia Workup - MCV

ANEMIA - Microcytic (MCV < 80)

- Iron Deficiency - High RDW (Red cell distribution width)
- Thalassemia minor - Normal RDW
- Rare
 - Sideroblastic anemia
 - Metal poisoning (esp lead, aluminum)
 - Occasional hemoglobinopathies
 - Thalassemia major
Update on (Approach to) Anemia

October 2, 2003 10:00 am

MCV, Retics, Blood film
- Ferritin

Ferritin < 15
 - Ferritin 15-120
 - TIBC
 - trial of Fe Rx

anemia corrected
anemia not corrected

examine marrow Fe stores

- Fe absent
- Fe present

Fe deficiency anemia
Fe deficiency excluded

Soluble Transferrin Receptor
- Measure of ferrokinetic activity
- Elevated in iron deficiency
- Not usually elevated in anemia of chronic inflammation (not an acute phase reactant)
- Still not widely available
- Expensive
- May replace iron binding capacity &/or ferritin

Anemia Workup - MCV

- Microcytic
 - Iron Deficiency
 - Anemia of Chronic Disease
 - Thalassemias
 - Hemoglobinopathies
 - Sideroblastic Anemia

- Normocytic
 - Anemia of chronic disease
 - Early iron deficiency
 - Hemoglobinopathies
 - Primary marrow disorders
 - Combined deficiencies
 - Increased destruction

- Macrocytic
 - Megaloblastic anemias
 - Liver disease/alcohol
 - Hemoglobinopathies
 - Metabolic disorders
 - Primary marrow disorders
 - Increased destruction
Anemia - Macrocytic (MCV > 100)

- If MCV 100-110 fl, must look for other causes of macrocytosis
- If MCV > 110 fl, almost always folate or cobalamin deficiency

Macrocytosis (MCV > 100 fl)

- Common
 - Drugs (cytotoxics, immunosuppressants, AZT, anticonvulsants)
 - Alcohol
 - Liver disease
 - Reticuloctyosis
 - B12/folate deficiency
 - Myelodysplastic syndrome
 - Marrow infiltration (malignancy, fibrosis)
- Less common
 - Aplasia
 - ‘Artifactual’
 - Cold agglutinins
 - Hyperglycemia
 - Hyperleukocytosis

Macrocystosis of Alcoholism

- 25-96% of alcoholics
- MCV elevation usually slight (100-110 fl)
- Minimal or no anemia
- Macrocytes round (not oval)
- Neutrophil hypersegmentation absent
- Folate stores normal

Megaloblastic Hematopoiesis

- Marrow failure due to: disrupted DNA synthesis & ineffective hematopoiesis
- Giant precursors and nuclear:cytoplasmic dyssynchrony in marrow
- Neutrophil hypersegmentation & macroovalocytes in blood
- Anemia (and often leukopenia & thrombocytopenia)
- Almost always due to Cbl or folate deficiency

Evolving Cobalamin Deficiency

- Usual sequence:
 - Serum Cobalamin falls
 - Serum methylmalonic acid & homocysteine rise
 - MCV rises within the normal range, with hypersegmentation of neutrophils
 - MCV rises above normal
 - Anemia and/or neuropathy
 - Symptoms
‘Dimorphic’ Anemias

- Folate & Fe deficiency (e.g., pregnancy, alcoholism)
- B₁₂ & Fe deficiency (e.g., pernicious anemia with atrophic gastritis)
- Thalassemia minor & B₁₂ or folate deficiency
- Fe deficiency & hemolysis (e.g., prosthetic valve)
- Folate deficiency & hemolysis (e.g., HgbSS disease)
- Blood smear critical to assess these

Hemolytic Anemia

- Anemia of increased destruction
 - Normochromic, normochromic anemia
 - Shortened RBC survival
 - Reticulocytosis - Response to increased RBC destruction

Tests Used to Diagnose Hemolysis

- Reticulocyte count (combined with serial Hb)
- Haptoglobin
- Urine hemosiderin
- Also helpful:
 - Serum bilirubin
 - Serum LDH
 - Hemoglobinuria

Findings Consistent with Hemolysis

- Serum unconjugated bilirubin: Increased
- Serum LDH (and LDH1:LDH2): Increased
- Serum haptoglobin: Decreased
- Urine hemoglobin: Present
- Urine hemosiderin: Present
- Urine urobilinogen: Increased
- Cr²⁵-RBC lifespan: Decreased
- Reticulocyte count: Increased

(problems with sensitivity and specificity; none define cause)
Blood morphology in hemolytic anemias

<table>
<thead>
<tr>
<th>Sickle cells</th>
<th>Sickle cell anemia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hb crystals</td>
<td>Hb CC disease</td>
</tr>
<tr>
<td>Fragments, helmets</td>
<td>Microangiopathic hemolysis</td>
</tr>
<tr>
<td>Microspherocytes</td>
<td>Hereditary spherocytosis</td>
</tr>
<tr>
<td>Elliptocytes</td>
<td>Hereditary elliptocytosis</td>
</tr>
</tbody>
</table>

N.B., hemolysis is not excluded by a normal blood smear.

Tests to define the cause of hemolysis

- Hemoglobin electrophoresis
- Hemoglobin A₂ (beta-thalassemia trait)
- RBC enzymes (G6PD, PK, etc)
- Direct & indirect antiglobulin tests (immune)
- Cold agglutinins
- Osmotic fragility (spherocytosis)
- Acid hemolysis test (PNH)
- Clotting profile (DIC)

NB: These tests do not demonstrate the presence of hemolysis.

Anemia Summary

- Check reticulocyte count 1st
 - If elevated, look for causes of increased destruction or bleeding
 - If normal or decreased, look for causes of marrow failure
 - Workup for marrow failure tailored by MCV, RDW, and peripheral blood smear
 - If low, iron problems or globin problems
 - If high, megaloblastic or DNA problems
 - If normal, need to look for combined anemias