

## Learning Objectives

- Understand the evaluation of thrombocytopenia and qualitative platelet abnormalities focusing on laboratory medicine.
- How are platelets measured using an automated cell counter? What artifacts can be seen with this automated counting?
- How is a bleeding time performed and is it a good test?
- Know how optical platelet aggregation, Accumetrics and PFA-100 can measure qualitative platelet abnormalities -congenital platelet disorders, drug effect, von Willebrand Disease.





| Findings                      | Coagulation | Platelet   |  |
|-------------------------------|-------------|------------|--|
| Petechiae                     | Rare        | Common     |  |
| Hematomas and<br>Hemarthroses | Common      | Rare       |  |
| Delayed Bleeding              | Common      | Rare       |  |
| Bleeding cuts                 | Minimal     | Persistent |  |
| Gender                        | Male        | Women      |  |
| Mucosal                       | Minimal     | Typical    |  |





- Platelets can be measured by the automated cell counter in two ways:
  - Impedence
    - Count: Cells a passed through a channel single file; the number of cells counted between 2 and 20 fL is the platelet count
    - Size: Area under the deflection curve is the size; the mean of all the areas if the mean platelet volume (MPV)
  - Optical
    - Polymethine fluorescent dye stains DNA/RNA and platelet membranes and granules
    - Laser counts the positively stained cells



# Real or Spurious?

22 year old student athlete undergoes a routine preoperative physical exam and laboratory studies prior to right knee arthroscopy; he has no significant past medical history; no bleeding or family bleeding history; he takes no medications; physical exam is unremarkable

WBC 5.0, Hct 45%, Plt 20K, smear next slide









# Bleeding Time Prolonged

- Congenital
- Drugs (e.g. antiplatelet drugs +/- ASA)
- Alcohol
- Uremia
- Hyperglobulinemias
- · Fibrin/fibrinogen split products
- Thrombocythemia
- Cardiac Surgery

## Evaluate as two groups

- Quantitative
  - Production, Destruction, Sequestration, Dilution
- OR
- Qualitative - Adhesion, Aggregation, Secretion, Medication





### Aggregometry

- Purpose: used to detect abnormalities in platelet function
- Principle: an aggregating agent is added to platelet rich plasma in a cuvette; as the platelets aggregate, the light transmission increases
- Specimen: platelet rich plasma prepared from citrate whole blood with test completed within 3 hours of the collection
- Procedure: soft spin to prepare platelet rich plasma prepared; hard spin to prepare platelet poor plasma (blank)



# Interpretation

- Evaluate the slope of aggregation; both primary and secondary wave
- Evaluate the extent of aggregation
- Low dose ADP: two waves; high dose a single wave
- Epi biphasic in 80% of normal
- Collagen acts by releasing ADP so only a single wave
- Ristocetin antibiotic that makes vWf bind platelets and induces aggregation; normal tracing does not exclude vWD













# Glanzmann's Thrombasthenia Rare Condition Inherited absence of GPIIb/IIIa (AR) Severe Bleeding manifestations GPIIb/III a key platelet glycoprotein required for aggregation Absence of aggregation with ADP, Epi, Collagen Normal ristocetin





#### von Willebrand's Disease

- · Inherited bleeding disorders
- Absent or decreased levels of vWf or lack of large and medium sized multimers
- Work up includes vWf:Ag level, FVIII:C activity, Ristocetin Cofactor Activity, Platelet Aggregation studies



### Case

- 33 year old woman with menorrhagia
- · History of epistaxis since childhood
- Cousin with similar problems
- Aspirin for headaches; no other meds
- PT, PTT, TT, Platelets normal count
- Blood smear platelet morphology normal

## **Differential Diagnosis**

- Inherited
  - Bernard-Soulier
  - Glanzmann's
  - Storage Pool Defect
  - -vWD
- Acquired
  - DIC, MDS, uremia, drugs, dysproteinemia

## vWD Lab Workup

- · Bleeding Time
- Ristocetin Cofactor (functional)
- Ristocetin Aggregation
- vWf Ag (quantitative)
- Factor VIII:C
- Multimeric Analysis







- intermediate or large multimers
- BT usually prolongedFVIII decreased or normal
- Largest multimers are absent
- Concentration too low to induce aggregation





- Severe bleeding disorder
- Very low levels of all multimers; low vWf:Ag, FVIII:C, Ristocetin Cofactor activity

| Test      | IA     | IIA    | IIB    | III |
|-----------|--------|--------|--------|-----|
| BT        | V      | V      | V      | V   |
| FVIII     | D      | D or N | D or N | D   |
| vWAg      | D      | N or D | N or D | D   |
| Rist Cof  | D      | D      | D or N | D   |
| Rist Aggr | D or N | D      | Ι      | D   |
| Multimer  | N      | А      | А      | А   |