Molecular Diagnosis

Basic Concepts, Genetic Alterations, Approaches to Detection, Interpretation, Clinical, Ethical and Legal Implications.

What is a “Genetic Test”?*

- Analysis of human
 - DNA, RNA, chromosomes, proteins, metabolites
- to detect heritable disease related
 - genotype, mutation, phenotype, or karyotype
- for clinical purposes.
- “Molecular” genetic test: DNA/RNA-based
 - Usu. PCR or related methodology, or Southern Blotting.

Human genome organization

- Human genome:
 - Total DNA content of cells
 - Nuclear genome – approx. 30,000 genes
 - Mitochondrial genome – 37 genes.
- Nuclear genome:
 - 24 linear double-stranded DNA molecules.
 - 1.5% coding
 - 3% non-coding highly conserved in mammals
 - 45% transposon-based repeats!
 - 6.6% heterochromatin repeats
 - 44% other non-conserved

Coding DNA

- 90-95% encode mRNA – polypeptides.
- 5-10% - RNA genes.

DNA sequence families (related coding sequences)

- Arise from gene duplication
- Clustered (e.g., V-family genes) or dispersed

Pseudogenes/gene-fragments

- Non-functional gene-related segments
- May contain introns (duplication events) or lack them
 (“processed pseudogenes” - retrotransposition events.)
- Estimated 20,000 pseudogenes in human genome.

Nuclear genome organization

Mitochondrial genome

- 16,569bp, 44% GC
 - “H” strand – rich in G; “L” strand – rich in C.
- 37 genes – 28 encoded on “H”, 9 on “L”
 - 22 tRNA, 2 rRNA
 - 13 polypeptide genes
 - 13 of > 80 subunits of respiratory complexes of oxidative phosphorylation system.
- Variable number per cell.
- “Heteroplasmy”
Mitochondrial Genetic Code

<table>
<thead>
<tr>
<th>Codon</th>
<th>Nuclear Code</th>
<th>Mitochondrial code</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGA</td>
<td>Arg</td>
<td>Stop</td>
</tr>
<tr>
<td>AGG</td>
<td>Arg</td>
<td>Stop</td>
</tr>
<tr>
<td>UGA</td>
<td>Stop</td>
<td>Trp</td>
</tr>
<tr>
<td>AUA</td>
<td>Ile</td>
<td>Met</td>
</tr>
</tbody>
</table>

Types of mutations and their consequences

Implications for Molecular genetic diagnosis

Mutations: functional vs. phenotypic effect

- Phenotypic effect of mutation
 - Effect on phenotype of individual with mutation.
- Functional effect:
 - No change in gene function.
 - E.g., point mutation w/ no AA change.
 - Loss of function:
 - Gene product with reduced or absent function.
 - Gain of function
 - Mutant gene product does something abnormal.

Loss of Function Mutations

- Usually Recessive Phenotypes
 - Dominant phenotype w/
 - Haploinsufficiency
 - E.g., BMPR-2 mutations in Primary Pulmonary hypertension
 - Dominant negative effect
 - E.g., Fibrillin-1 mutations in Marfan Syndrome.
 - Hereditary Cancer Syndromes
 - Somatic loss of second allele (“second hit”).
- Many mutations in gene w/ similar phenotype.
 - Point mutations, frame-shift mutations and deletions with similar phenotypes.

Loss of Function mutations

<table>
<thead>
<tr>
<th>Change</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entire gene deletion</td>
<td>α-thalassemia</td>
</tr>
<tr>
<td>Partial gene deletion</td>
<td>60% of DMD</td>
</tr>
<tr>
<td>Insertions</td>
<td>LINE-1 insertion in F8</td>
</tr>
<tr>
<td>Translocations</td>
<td>Women w/ DMD</td>
</tr>
<tr>
<td>Inversion</td>
<td>F8 inversion</td>
</tr>
<tr>
<td>Promoter mutation</td>
<td>β-globin -29 A>G</td>
</tr>
<tr>
<td>Promoter methylation</td>
<td>Many cancers</td>
</tr>
<tr>
<td>Poly-A site mutation</td>
<td>α-globin AATAAA>AATAGA</td>
</tr>
</tbody>
</table>
Loss of Function mutations

<table>
<thead>
<tr>
<th>Change</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonsense mediated RNA decay</td>
<td>Beta-globin Q39X</td>
</tr>
<tr>
<td>Splice donor loss</td>
<td>PAX3 451+1 G>T</td>
</tr>
<tr>
<td>Splice acceptor loss</td>
<td>PAX3 452-2 A>G</td>
</tr>
<tr>
<td>A Exonic splicing enhancer</td>
<td>SMN2 Exon7 change</td>
</tr>
<tr>
<td>Activate cryptic splice site</td>
<td>CFTR 3849 +10kb C>T</td>
</tr>
<tr>
<td>Frame-shift mutation</td>
<td>BRCA1 185delAG</td>
</tr>
<tr>
<td>Nonsense mutation</td>
<td>PAX3 Q254X</td>
</tr>
<tr>
<td>Missense mutation</td>
<td>HFE C282Y</td>
</tr>
</tbody>
</table>

Gain of Function Mutations

- Usually dominant phenotypes
- Only few (or one) mutation(s) per gene with gain of function effect

Gain of Function Mutations

- Factor V Leiden
 - Arg506Gln.
 - Resistance to inactivation by activated Protein C.
 - Increased thrombotic risk

Gain of Function Mutations

- Fibroblast Growth Factor Receptor 3 (FGF3)
 - Receptor tyrosine kinase, activated by binding FGF, to start signaling cascade.
 - Gly390Arg (1138 G>A):
 - “Mildly” increased activity (requires FGF binding)
 - ACHONDROPLASIA.
 - Y373C, R248C, and S249C
 - Create extracellular cysteine
 - Ligand independent binding: “greatly increased” activity.
 - Severe phenotype: neonatal death (“Thanatophoric Dysplasia.”)

Nucleic-acid alterations targeted in molecular diagnosis

- Molecular Genetics:
 - Recurrent mutations
 - “Private” mutations
 - Gross alterations vs. “smaller” alterations
 - Coding region vs non-coding region alterations
 - Trinucleotide repeat alterations.
 - Very large repeats defy amplification methods.
 - Mitochondrial DNA alterations.
 - “heteroplasmy”.

Samples for Molecular Genetic Diagnosis

- DNA Testing: Any nucleated cells.
 - Blood samples; mouthwashes or buccal scrapes; CVS samples; 1-2 cells from 8 cell stage; hair; semen; archived pathological specimens (dead patients); “Guthrie cards” (dried blood spots).
- RNA Testing: Cells which express the transcript.
RNA vs. DNA

- DNA:
 - Stable; can be directly amplified w/PCR; easy to work with.
 - Obtainable from any nucleated cells.
 - Contains introns:
 - Need to amplify each exon separately (w/ large introns)
 - Introns not tested – cryptic splice sites may be missed.
 - Breakpoints variable:
 - Problem w/ PCR-based methods.

- RNA:
 - No introns: RT-PCR in fewer segments.
 - Effects of mutations seen in mRNA
 - Cryptic splice sites; Gross rearrangements
 - RNA fusions less variable than DNA breakpoints
 - Difficult to work w/:
 - Need for RT step
 - Ubiquitous Ribonucleases.
 - Need for cells w/c express RNA
 - Not all rearrangements w/ gene fusion
 - Nonsense-mediated decay.

Mutation Detection Tests

- Tests for known mutations
 - One mutation (e.g., Factor V Leiden)
 - A few mutations (e.g., CF 23 mutations plus 2 polymorphisms)
 - Many mutations

- Tests for known & Unknown mutations
 - Mutation “scanning” tests
 - Detect presence, not identity of variant
 - Sequencing (DNA or RNA)
 - Presence & identity of variant.

Tests for known mutations

- Most use some form of target amplification
 - E.g. Polymerase chain reaction
 - Either a probe, or a restriction enzyme is used to distinguish normal from mutant sequence.
 - Results, shown as presence or absence of the specific mutation.
 - No information on presence or absence of other mutations in gene.

Mutation Scanning Methods

- Mutation in family not known.
- Scan multiple segments of one or more genes for mutations in.
 - Exons
 - Introns, introns, splice sites, promoters, enhancers, “locus control region”, etc.
- Specific strategy determined by clinical syndrome/test purpose.
“Physical”/screening methods

- Physical properties of amplified gene segments
 - Denaturation profile, electrophoretic mobility, etc.
 - SSCP (single strand conformation polymorphism)
 - DGGE (Denaturing gradient gel electrophoresis)
 - DHPLC (denaturing high performance liquid chromatography)
 - Cleavage fragment length polymorphisms
 - Heteroduplex analysis
 - Dideoxy fingerprinting.

“Physical”/screening methods

- Sensitivity determined by specific mutation
- Need for multiple conditions
- One datapoint per gene segment evaluated
- Screen for presence not identity of mutation.

Mutation Scanning Methods

- Direct Sequencing
 - Screen presence and identity of mutation
 - Bidirectional sequencing
 - 2 datapoints per base sequenced
 - DNA sequencing
 - Usual multiple exons tested.
 - Splice-site mutations may be missed, especially mutations deep in large exons.
 - RNA sequencing
 - Need for cells w/ express gene
 - “Nonsense mediated decay”
 - RNA more labile

Testing Strategies.

- Single gene disease w/ only recurrent mutations:
 - e.g., Multiple Endocrine Neoplasia-2 (MEN-2)
 - Activating (gain of function) mutations in RET proto-oncogene.
 - 55kb gene w/21 Exons.
 - Mutations limited to: 13 codons on exons 10, 11, 13, 14, 15, 16.
 - Test for specific mutations.
 - Positive and negative results:
 - High positive and negative predictive values.

Testing Strategies.

- Single gene ds w/recurrent and private mutations
 - e.g., CFTR, thalassemias.
 - Test for “ethnic” recurrent mutation(s)
 - If positive, significance known
 - If negative, and index case or relative, perform “mutation scanning” test.
 - if positive, probably significant, family testing may help.
 - if negative, significance depends on whether index case or relative.
Recurrent mutations: Cystic Fibrosis

- **CF**: AR; disease when 2 mutated CFTR alleles.
 - 1:3,300 Caucasians;
 - 1 in 9,500 Hispanics;
 - <1 in 50,000 Native Africans and Asians (Af.Am. 1:15K, As. Am. 1:32K)
- **NIH consensus statement**:
 - Offer testing to all planning pregnancy.

BUT: 900 CFTR MUTATIONS AND COUNTING!!!!!!

Solution:
- Test for most common mutations (currently 25)
 - i.e., test for recurrent mutations w/c will detect most cases in population.

CFTR: INCIDENCE, CARRIER, MUTATION RATES: BY POPULATION

<table>
<thead>
<tr>
<th>Group</th>
<th>Incidence</th>
<th>Carrier freq.</th>
<th>%ΔF508</th>
<th>% other "common"</th>
<th>% group-specific</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caucasian</td>
<td>1:3,300</td>
<td>1/29</td>
<td>70</td>
<td>13</td>
<td>80-90%</td>
<td></td>
</tr>
<tr>
<td>Hispanic</td>
<td>1/8-9000</td>
<td>1/46</td>
<td>46</td>
<td>11</td>
<td>57%</td>
<td></td>
</tr>
<tr>
<td>Ashkenazi</td>
<td>1/3,300</td>
<td>1/29</td>
<td>30</td>
<td>67</td>
<td>97%</td>
<td></td>
</tr>
<tr>
<td>Native American</td>
<td>1:1500-2970</td>
<td>1/40</td>
<td>0</td>
<td>25</td>
<td>69</td>
<td>94%</td>
</tr>
<tr>
<td>African American</td>
<td>1:15,300</td>
<td>1/60-65</td>
<td>48</td>
<td>4</td>
<td>23</td>
<td>75%</td>
</tr>
<tr>
<td>Asian American</td>
<td>1:32,100</td>
<td>1/90</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>30%</td>
</tr>
</tbody>
</table>

Negative results, Screening

- **Caucasian Couple, no family hx. both test (-):**
 - Carrier rate = 0.04
 - Population incidence ~ 0.0016*0.25 = 1 in 2500
 - “Residual Risk” = 0.00249 (94% detection rate)
 - probability of affected child ~ 1 in 645,000
- **Hispanic couple:**
 - Carrier rate = 0.022
 - Population incidence ~ 1 in 8-9000
 - “Residual Risk” = 0.00958
 - probability of affected child ~ 1 in 43,584

Negative results: + family history

- **Asian Couple**:
 - Carrier rate = 0.011
 - probability of affected child ~ 1: 32,000
 - “Residual Risk” = .0077
 - probability of affected child ~ 67500
- **Caucasian Couple**
 - each w/ sibling with CF
 - (Mutation in sibling not known).
 - (Prior Probability of each parent being a carrier = 2/3).
 - Both test negative for the 25 mutations.
 - Probability of being a carrier (each parent) = 0.168 .
 - Probability of affected child = 1 in 140
Negative results: + family history

- Hispanic Couple w/ same history and results:
 - Probability or being carrier = (0.467)
 - probability of an affected child = 1 in 20!

- Asian couple w/ same hx and results:
 - probability of affected child 1 in 12!

Expanded trinucleotide repeats

- Southern Blotting Methods
 - Gold Standard
 - Labor intensive, need for high quality DNA

- PCR-based Methods
 - Rapid
 - Amplification failure of very long repeats.

Expanded Repeats-Huntington Disease

<table>
<thead>
<tr>
<th>Normal</th>
<th>(CAG)3-26</th>
<th>(CAG)27-55</th>
<th>(CAG)35-41</th>
<th>(CAG)42-121</th>
</tr>
</thead>
<tbody>
<tr>
<td>At risk for expansion</td>
<td>Variable penetrance</td>
<td>Affected</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Strategy: “Private” mutations

- DNA sequencing of “entire” gene(s):
 - Usually only exons and adjacent introns.
 - Will not detect:
 - Mutations deep in introns causing alternative splicing.
 - Large deletions/rearrangements.

- RNA sequencing:
 - Detect abnormal transcripts:
 - Splice mutations; large deletions, rearrangements.
 - Will not detect whole gene deletions!

Test Strategy: “Private” mutations

- Tests for large deletions:
 - In-situ hybridization, Southern Blotting, "quantitative" PCR and related methods ("multiplex probe ligation-dependent amplification" – “MLPA”)

How to Interpret a Test Result

- Pathogenic Mutation
- No Variation
- Variation of unknown clinical significance
Result Interpretation:

- Previously reported mutation
 - Known to be cause of disorder
 - Known to be “neutral variation”
- New mutation:
 - Type likely to be assoc. w/disorder
 - frame-shift mutation, start “ATG” mutation, “Stop codon” nonsense mutation, nonsense mutation, splice-junction mutation, non-conservative missense in active site,
 - Type likely to be “neutral”
 - e.g., no change in amino acid, and not cryptic splice site
 - Type w/c may or may not be assoc. w/ disorder
 - E.g., non-conservative missense mutation, in region not known to be active site, etc.

RESULT INTERPRETATION

- Two mutations (Recessive Disorders)
 - Test parents to ensure two mutations in trans (separate alleles) not in cis (same allele).
- No mutation detected.
 - Residual risk depends on individual gene
 - some genes - mainly point mutations, easily detected.
 - Other genes: deletions, rearrangements, intronic alterations, etc., common (e.g., Neurofibromatosis1, BMPR2 - need special tests e.g., tests for gene dosage, etc.).

Genetic Testing: Additional Considerations

- Screening vs Genetic testing of “index” case
 - With “index” case, it is known that tested individual has clinical disease; only value of negative test is that you know that it cannot be used to screen relatives.
- Locus heterogeneity:
 - Multiple genes causing same syndrome
- Variable “penetrance”
 - May or may not depend on specific mutation.
- Variable expressivity
 - Variable severity of disease.
 - May or may not depend on specific mutation

Benefits Vs. Risk of Testing:

- Availability of treatment/prevention
- Pre-clinical manifestations.
- Discrimination:
 - Insurance
 - Employment
 - Confidentiality

Factors affecting utility of genetic testing

- Increased Utility
 - High morbidity/mortality of disease
 - Effective but imperfect Rx
 - High predictive power test (high penetrance)
 - Screening/surveillance expensive/difficult
 - Preventive measures expensive or associated with adverse effects
- Decreased utility
 - Low morbidity/mortality of disease
 - Highly effective and acceptable Rx (i.e., can wait for clinical disease)
 - Poor predictive power of genetic test (low penetrance)
 - Screening simple/needed regardless of mutation status
 - Preventive measures inexpensive, efficacious, and highly acceptable - e.g., folate supplementation.

Genetic Testing: Additional Considerations

- Ethics
 - implications for patients and relatives.
 - e.g., identical twins; siblings;
 - paternity issues -
- Legal issues
 - New York State Civil Right Law:
 - Need for informed consent
 - Genetic testing only (not phenotypic testing)
 - Standards for informed consent in civil rights law, section 79-l
 [http://assembly.state.ny.us/leg/?id=17&a=12].