Hematopoietic Stem Cells, Stem Cell Processing, and Transplantation

Joseph (Yossi) Schwartz, MD
Director, Hemotherapy and Stem Cell Processing Facility

Bone Marrow Transplantation Can Cure:
- Leukemia
- Lymphoma
- Multiple Myeloma
- Genetic Diseases: Sickle Cell Disease, Thalassemia, Fanconi’s Anemia, Immunodeficiency Syndromes
- Solid Tumors: Brain tumors, ovarian cancer?, breast cancer?

A 40-year old man with acute myelogenous leukemia (AML) who has a deletion of chromosome 5 is referred to your office because he has not entered remission, despite three intensive induction regimens. The patient has an identical twin, which was confirmed by HLA typing and other genetic testing. Several other siblings also registered with the National Marrow Donor Program (NMDP). One of these siblings was found to be 6-antigen match for his brother. A preliminary search of the NMDP registry found 20 potential matches. Currently the patient is not infected and has normal organ function. He has no circulating blasts, although his marrow has over 50% blasts.

Which is the best treatment option for this patient?

A) Additional chemotherapy to induce remission
B) Syngeneic bone marrow transplantation
C) Allogeneic sibling bone marrow transplantation
D) Unrelated donor bone marrow transplantation
E) Autologous peripheral blood stem cell transplantation

Hematopoietic Stem Cells

- Sustain hematopoiesis
- Self-renewal throughout life: produce daughter cells that retain stem cell properties, do not become “committed”
- High proliferative capacity: 1 cell → millions
- Pluripotent: → red cells, white cells and platelets

Hematopoiesis Hierarchy

Stem Cells | Progenitor Cells | Precursors

Hematopoietic Stem Cells: Processing and Transplantation
Maturation of Hematopoietic Cells
- Cell division
- Major amplification of cell numbers
- Progressively less capacity to proliferate
- “Mature” cells are post-mitotic when released into circulation
- Cells cannot “back-track” to less mature form
- Cells cannot “switch” from one lineage to another

Hematopoietic Stem Cells
- Self-renewal throughout life
- Rare: <1 per 100,000 bone marrow cells
- Also found circulating in blood, cord blood
- Required for successful bone marrow transplantation

Discovery of the role of HSCs
+ whole body irradiation → death
+ irradiation + protect spleen → recovery
+ irradiation + spleen cells → recovery
+ irradiation + bone marrow → recovery with colony forming units spleen (CFU-S)

Identification of HSCs
- Not morphologically identifiable
- In vitro tissue culture assays (at different level of maturation):
 * CFU-GM, CFU-E,
 ** Less mature: LTC-IC, Cobble area forming cells
 ♦ Cell surface antigens: CD34
 A close correlation exists between the number of CD34+ cells and CFU-GM in peripheral blood stem cell collections.

Hematopoiesis Hierarchy
- Stem Cells
- Progenitor Cells
- Precursors

Hematopoietic Stem Cells: Processing and Transplantation
Hematopoietic Stem Cells: Processing and Transplantation

Hematopoietic Stem Cells Transplant

Preparative Regimen
- TBI, Chemo
- Role: eradicate cancer, immunosuppression to allow engraftment (allotransplant)

HSCT

Sources of Donors
- Syngeneic donor
- Allogeneic donor
- Autologous donor

Human Leukocyte Antigen (HLA)
- The major histocompatibility complex
- Genes for HLA – on chromosome 6
- Inherited as haplotypes → two siblings have 1:4 chance of being HLA identical
- HLA identical = HLA matched → recipient will not reject the allograft

The story has two sides…
- Recipient T-cells recognize foreign donor antigens and can reject graft
- Donor T-cells recognize recipient antigens and can cause GVHD
- Donor T-cells recognize recipient antigens (minor histocompatibility) and can cause graft-versus-tumor
Hematopoietic Stem Cells: Processing and Transplantation

Graft Versus Tumor Effect

Mechanism of GVHD

- Accentuated immune response, stimulated by injury from the preparative regimen prior to transplant
- Primarily confined to the GI tract
- Cytokines are critical to the development of GVHD

GVHD

- **Advantages:**
 - Graft free from disease
 - Reduced graft vs host disease (GVHD)
 - Reduced graft rejection

Syngeneic Transplants

- **Disadvantages:**
 - Most patients don’t have an identical twin
 - Infectious disease transmission
 - No Graft vs. Tumor (GVT)

- **Advantages:**
 - Graft free from disease
 - Reduced graft vs host disease (GVHD)

Allogeneic Transplants

- **Disadvantages:**
 - Donor must be HLA compatible
 - Some patients don’t have HLA matched family members
 - Anonymous donor registries: NMDP, Cord Blood Banks
 - Graft vs. Host Disease (GVHD)
 - Infectious disease transmission

- **Advantages:**
 - Graft free from disease
 - Graft vs. Tumor (GVT)

Autologous Transplants

- **Disadvantages:**
 - Graft may contain tumor cells or other abnormal cells
 - Insufficient cells: aplastic anemia
 - No Graft vs. Tumor (GVT)

- **Advantages:**
 - Readily available for patients without HLA identical donors
 - No infectious disease transmission
 - Reduced peri-transplant morbidity and mortality
A 40-year old man with acute myelogenous leukemia (AML) who has a deletion of chromosome 5 is referred to your office because he has not entered remission, despite three intensive induction regimens. The patient has an identical twin, which was confirmed by HLA typing and other genetic testing. Several other siblings also registered with the National Marrow Donor Program (NMDP). One of these siblings was found to be 6-antigen match for his brother. A preliminary search of the NMDP registry found 20 potential matches. Currently the patient is not infected and has normal organ function. He has no circulating blasts, although his marrow has over 50% blasts.

Which is the best treatment option for this patient?

A) Additional chemotherapy to induce remission
B) Syngeneic bone marrow transplantation
C) Allogeneic sibling bone marrow transplantation
D) Unrelated donor bone marrow transplantation
E) Autologous peripheral blood stem cell transplantation

Sources of Stem Cells

- Bone Marrow
- Peripheral Blood Stem Cells (PBSC)
- Cord Blood

Early Bone Marrow Transplantation (BMT)
- Recipients myeloablated with chemotherapy and/or radiation
- Bone Marrow (BM) aspirated iliac crests of from normal related HLA identical donors
- BM rapidly filtered through coarse filters to remove fat and particulate matter
- Taken to bedside for immediate reinfusion
- Typical marrow for a 70 kg adult consisted of:
 - 300-400 ml of RBCs
 - 1 to 4 X 10^8 nucleated cells/kg
 - 1.0 to 1.5 L volume

Cell Types for Transplantation

1) Bone Marrow
- Collected from the posterior iliac crest
- Advantages:
 - Large number of stem cells
 - Few red blood cells
 - Few lymphs
- Disadvantages:
 - Surgical procedure
 - General anesthesia
 - Pain during recovery

2) Peripheral Blood Stem Cells
- Marrow stem cells detach continuously, enter the circulation, and return to marrow
- Collected by apheresis following "mobilization" by hematopoietic growth factor and/or chemotherapy
- FDA approved hematopoietic growth factors: Granulocyte colony stimulating factor (G-CSF), Granulocyte/macrophage stimulating factor (GM-CSF),

Hematopoietic Stem Cells: Processing and Transplantation
Cell Types for Transplantation

- **(3) Cord Blood Stem Cells**
 - Blood from the umbilical cord and the placenta is rich in HSC
 - **Advantages:**
 - Collected immediately after birth
 - Collection has no risks for mother or infant
 - Readily available, anonymous banks, family donation
 - **Disadvantages:**
 - Low cell dosages may limit to small recipients
 - Availability of HLA-matched donor
 - Multiple collections impossible

Problems to be overcome: Auto Transplants

- Insufficient cells in bone marrow failure
- Tumor cell contamination of the graft which could preclude cure
- Cryopreservation needed to preserve stem cells from collection to reinfusion post-myeloablative therapy.

Problems to be overcome: All Transplants

- Myeloablative regimens very toxic
 - High peri-transplant morbidity and mortality
 - Infectious complications
 - Bleeding
 - Cells had to be infused immediately
 - Large volume, including donor plasma
 - Too few cells
 - Small donor (child, baby) to larger recipient (larger child, adult)

Problems to be overcome: Allo Transplants

- Large number of contaminating red blood cells (300-400 mL)
 - ABO/Rh incompatibility
 - Infusion of incompatible red cells with donor marrow
 - Hemolytic transfusion reaction
 - Hypotension and renal failure
 - Threat of hemolysis precluded transplant across ABO barriers
 - Histocompatibility
 - High risk of GVHD with mismatches

“Mini-Transplants” = Low Dose Preparative Regimens

- **Advantages:**
 - Less peri-transplant morbidity and mortality
 - Increased GVL and GVT
- **Disadvantages:**
 - May not eradicate tumor completely
 - Increased GVHD
 - May need to be augmented with donor-derived lymphocyte infusions

Reduced-intensity Preparative Regimen Transplant:
primarily immunosuppressive
depend on the graft to eradicate the cancer

Hematopoietic Stem Cells: Processing and Transplantation
BMT Complications
- Early
 - Tissue toxicities
 - Mucositis – oropharyngeal, GI
 - VOD
 - Pneumonitis
 - Pancreatic injury
 - Infections (mucositis, catheters, WBC)
 - Bacterial, viral, fungal
 - GVHD- acute
- Late
 - GVHD-chronic
 - Late tissue damage
 - AVN
 - Cataracts
 - Pancytopenia
 - Growth & Development
 - 2ry Cancers
 - AML/MDS

HSC Transplantation Outcome

<table>
<thead>
<tr>
<th>Disease</th>
<th>Bone Marrow Engraftment</th>
<th>30 Day Mortality</th>
<th>100 Day Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autologous transplants</td>
<td>[Data withheld]</td>
<td>[Data withheld]</td>
<td>[Data withheld]</td>
</tr>
<tr>
<td>Allograft: HLA-identical</td>
<td>[Data withheld]</td>
<td>[Data withheld]</td>
<td>[Data withheld]</td>
</tr>
<tr>
<td>Allograft: HLA-mismatched</td>
<td>[Data withheld]</td>
<td>[Data withheld]</td>
<td>[Data withheld]</td>
</tr>
<tr>
<td>GVHD: Acute</td>
<td>30%</td>
<td>10%</td>
<td>90%</td>
</tr>
<tr>
<td>GVHD: Chronic</td>
<td>30%</td>
<td>10%</td>
<td>90%</td>
</tr>
<tr>
<td>Tumor recurrence</td>
<td>50%</td>
<td>30%</td>
<td>20%</td>
</tr>
<tr>
<td>Secondary neoplasms</td>
<td>30%</td>
<td>10%</td>
<td>90%</td>
</tr>
</tbody>
</table>

Stem Cell Processing

- Volume reduction
 - Centrifugation, removal of excess plasma
- Removal of red blood cells (after peripheral stem cell collection <20ml)
- Enables transplant of ABO/Rh mismatched stem cells
- Methods: Gravity sedimentation W/ HES
- Density gradient separation W/Ficoll-metrizoate

Stem Cell Processing: “Designer Products”

- T-cell depletion
 - Allows engraftment of HLA-mismatched or haploidentical matches
 - Greater risk of graft rejection
- Tumor purging
 - Pharmacologic agents, 4 HC

Stem Cell Processing: “Designer Products”:

- CD 34+ cell selection
 - Effective therapeutic dose - 1 to 5 X 10^6 cells/Kg
 - Higher doses result in faster engraftment
 - Eliminates lymphocytes → ↓ GVHD in allo grafts
 - Eliminates tumor cells in autologous grafts

Stem Cell Processing

Quality Control

- 1-3 x 10^8 MNC/kg correlates w/engraftment
- CFU-GM correlates with engraftment
- CD34 correlates with CFU-GM; Effective therapeutic dose - 1 to 5 X 10^6 cells/Kg
- Viability
- Sterility, Tumor cell contamination
- Engraftment, gold standard

Hematopoietic Stem Cells: Processing and Transplantation
Hematopoietic Stem Cells: Processing and Transplantation

Summary
- Blood cells have a limited life span
- Continuous production of blood cells achieved by proliferation of progenitor cells and precursor cells derived from stem cells
- Stem cells have self-renewal capacity
- Stem cells are identified by their ability to repopulate bone marrow in myeloablated recipients

Summary
- BMT can cure leukemia, lymphoma, myeloma, solid tumors, and genetic diseases
- BMT works because stem cells removed from the donor “engraft” in the recipients bone marrow.

Summary
- Bone marrow, peripheral blood, and cord blood are all sources of transplantable hematopoietic stem cells
- Donors can be syngeneic, allogeneic or autologous
- Stem cell processing labs can customized stem cell grafts for the specific needs of the patient