
RISK ASSESSMENT AND MANAGEMENT

Fanny K. Ennever Fall Term, 2003

Steps in Risk Assessment

- 1. Hazard identification
- 2. Exposure assessment (DOSE)
- 3. Quantitative toxicological assessment (DOSE-RESPONSE)
- 4. Risk characterization

Risk Management

- * Decisions on whether to act and how
- $\boldsymbol{\ast}$ Uses the numbers from risk assessment
- * Considers cost of alternatives
- * Is influenced by risk perception

1. Hazard Identification

Toxicological concepts:

- Any substance is toxic if dose is high enough, but only some chemicals can cause cancer
- Non-cancer toxicity: Protecting against the most sensitive effect protects against all effects: "threshold"
- Cancer: Any dose of a carcinogen carries some risk, but the smaller the dose, the smaller the risk

Key question for hazard identification: Is it a carcinogen or not?

Current methods:

* Epidemiology

- Animal testing
- In vitro (bacterial and mammalian cell) testing
- Structure-activity relationships

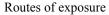
Scope of the identification problem

Synthetic chemicals cause only 1-5% of all human cancers

- ✤ >1 million chemical substances are known
- -3 thousand produced in high volumes
 - ➢ Full information available for 7%
 - ➢ No information available for 43%
- Tests (mutagenicity but not carcinogenicity) cost \$200,000 per chemical

Questions in Hazard Identification

 Is human cancer predicted well enough by



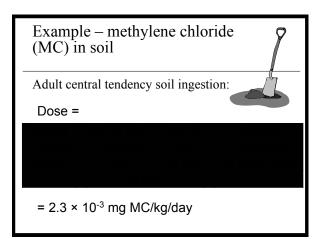
- > animal cancer tests?
- > mutagenicity?
- Are we controlling the right chemicals?

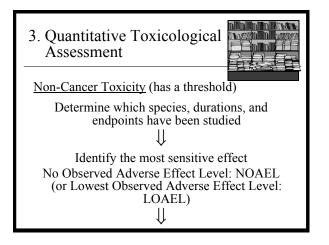
2. Exposure Assessment

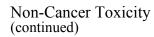
"How does the dose of a chemical depend on its concentration in air, water, soil, etc.?"

- ✤ Oral food, water, soil & dust
- Inhalation particulates and gases
- Dermal water, soil & dust

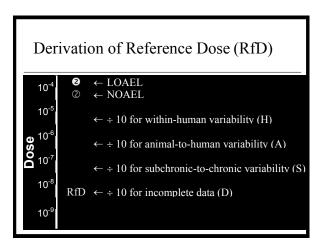
Who's Exposure?


Numerical estimate of exposure


- Must know frequency and duration of contact
- Depends on physiology and activities


Uncertainty

 Report both central tendency and upper bound values



NOAEL (or LOAEL)

Use *uncertainty factors* to account for withinhuman variability (÷10), animal-to-human variability (÷10), threshold (÷10), durations (÷10), and completeness of data (÷10) ↓

"Safe" dose = RfD

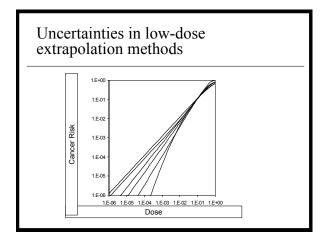
Example – methylene chloride RfD

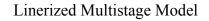
NOAEL: 5.85 (male mice) and 6.47 (female mice) mg/kg/day, liver toxicity

Uncertainty factors: 10 for within-human variability and 10 for animal-to-human variability

 $RfD = 6 \times 10^{-2} mg/kg/day$

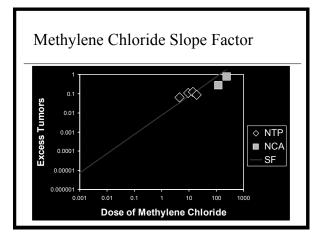
Only if the chemical is a "carcinogen"

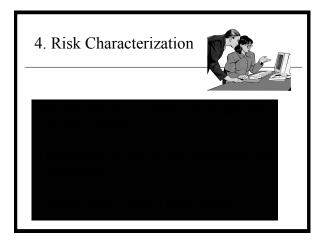



Cancer toxicity (no threshold)

Identify the most sensitive tumor

Extrapolate risk to low doses

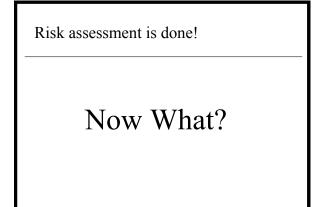

An estimate of carcinogenic potency

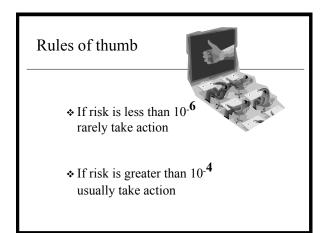


 $P(d) = 1 - \exp[-(q_0 + q_1d + q_2d^2 + \ldots + q_kd^k)]$

- q_1 coefficient of linear term
- q_1^* upper 95% confidence limit of q_1
 - also called Slope Factor (SF)
 - used by EPA for carcinogenic potency

Example – methylene chloride


 $Dose = 2.3 \times 10^{-3} \text{ mg MC/kg/day}$

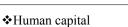

 $RfD = 6 \times 10^{-2} mg/kg/day$

 \rightarrow Dose is *less than* RfD so no noncancer risk

 $SF = 7.5 \times 10^{-3} \text{ per (mg/kg/day)}$

Risk = 1.7×10^{-5}

Cost-Benefit Analysis

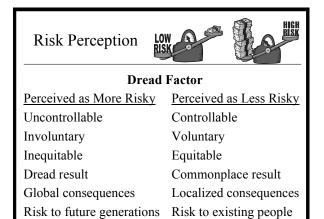

✤ Risk analysis:

How many premature deaths would action \boldsymbol{X} prevent?

- ♦ Cost analysis: How much would action X cost?
- ✤ Benefit analysis:

How much is preventing each premature death worth?

Approaches to benefit analysis



♦ Willingness-to-pay

≻Survey

➢Occupational behavior

- ➤Consumer behavior
- ♦ Credible range from above:
 - \gg \$2.1 million to \$11 million (1995 dollars)
 - >\$2.5 million to \$13 million (2003 dollars)

Risk Perception (continued)

Familiarity Factor

Perceived as More Risky	Perceived as Less Risky
New risk	Old risk
Not observable	Observable
Delayed effect	Immediate effect
No scientific consensus	Scientific consensus

EPA's Seven Cardinal Rules of Risk Communication

- CR 1 Accept and involve the public as a legitimate partner.
- CR 2 Plan carefully and evaluate your performance.
- CR 3 Listen to the public's concerns and feelings.
- CR 4 Be honest, open and frank.
- CR 5 Coordinate and collaborate with other credible sources.
- CR 6 Meet the needs of the media.
- CR 7 Speak clearly and with compassion, kindness and respect.

Guide to Ineffective Risk Communication

- 1. Avoid eye contact, keep your arms and legs crossed, and act nervous and/or bored
- 2. Use jargon and mountains of technical details
- 3. Emphasize the benefits of industry and the cost of cleanup

Guide to Ineffective Risk Communication (continued)

- 4. Blame others for mistakes and confusion
- 5. Make unrealistic promises
- 6. Be sarcastic when people express concerns or don't understand you
- 7. Give long, prepared, technical speeches when someone asks a question

Guide to Ineffective Risk Communication

- 8. Get angry; attack opponents
- 9. Refuse to answer personal questions
- 10. Minimize risks and make inappropriate comparisons

Bottom Line

Risk assessment can't give the "right" answer

More modest goal:

- Assessments are
 - Consistent
 - ✤ Transparent