

Complexity of genes

• Splicing in some genes seems straightforward such as globin

- Fibrillin is a protein that is part of connective tissue. Mutations in it are associated with Marfan Syndrome (long limbs, crowned teeth elastic joints, heart problems and spinal column deformities. The protein is 3500 aa, and the gene is 110 kb long made up of 65 introns.
- Titin has 175 introns.
- With these large complex genes it is difficult to identify all of the exons and introns.

Alternative RNA splicing

• Shortly after the discovery of splicing came the realization that the exons in some genes were not utilized in the same way in every cell or stage of development. In other words exons could be skipped or added. This means that variations of a protein (called isoforms) can be produced from the same gene.

How does DNA function as a code for protein synthesis?

- The experiments of Charles Yanofsky and Syndey Brenner demonstrated that the sequential arrangement of nucleotides along a gene code for a sequential arrangement of amino acids in its encoded protein.
- The code in DNA (and ultimately mRNA is read in triplets).
- The code is degenerate.

			5	Second	l let	ter			
	U		с		A		G		
	000 000	Phenyl- alanine	UCU UCC		UAU UAC	Tyrosine	UGU UGC	Cysteine	
0	UUA	Leucine	UCA	Serme	UAA	Stop codon	UGA	Stop codon	
	UUG		ocu		UAG	Stop codon	UGG	Tryptophan	
	CUU CUC		CCU CCC CCA CCG	Proline	CAU CAC	Histidine	CGU CGC	Arginine	
, C	CUA CUG	CUA CUG			CAA CAG	Glutamine	CGA CGG		
	AUU	Isoleucine	ACU	ACU ACC ACA ACG	AAU	Asparagine	AGU	Serine	
A	AUA	Methionine;	ACA		AAA		AGA AGG	Arginine	
	AUG	initiation codon	ACG		AAG	Lysine			
	G GUU GUC GUA GUG Valine		GCU GCC GCA	Alanine	GAU	Aspartic	GGU GGC GGA	Glycine	
G		Valine			GAA	acid			
		GCG		GAG	acid	GGG			

Assembly of ribosomes

- Ribosomal RNA is transcribed as a 45S precursor RNA, synthesized in the nucleolus by polI from thousands of copies of the gene.
- The 45S precursor (13,000 nt)is processed into 3 smaller RNAs 28S (5000 nt), 18S (2000 nt) and 5.8S (160 nt)
- The 5S subunit is synthesized by polIII from a cluster of 2000 genes located separately from the other ribosomal genes
- Some 80 proteins associate with the rRNAs to make up complete ribosome.
- Small ribosomal subunit (40S) contains 18S rRNA while the large 60S subunit contains the remaining rRNAs

Transfer RNAs (tRNAs)

- tRNAs are small 70-90 nt
- there are about 32 different tRNAs in most organisms
- the tRNAs contain unusual modified nucleotides
- aminoacyl-tRNA synthetases charge tRNAs with amino acids
- tRNAs function to deliver the amino acids to the ribosomes for protein synthesis

Features of tRNAs

- 1. exhibit a cloverleaf-like secondary structure.
- 2. have a 5'-terminal phosphate.

3. have a 7 bp stem that includes the 5'-terminal nucleotide and may contain non-Watson-Crick base pairs, e.g. GU. This portion of the tRNA is called the acceptor since the amino acid is carried by the tRNA while attached to the 3'-terminal OH group.

- 4. have a D loop and a TpsiC loop.
- 5. have an anti-codon loop.
- 6. terminate at the 3'-end with the sequence 5'-CCA-3'.
- 7. contain 13 invariant positions and 8 semi-variant positions.
- 8. contain numerous modified nucleotide bases.

Prokaryotic factor	Eukaryotic factor	Function		
Initiation factors	,			
IF1		Involved in forming		
IF2	elF2	initiation complex		
IF3	eIF3, eIF4C	827		
	CBPI	Involved in cap binding		
	elF4A, elF4B, elF4F	Search for first AUG		
	elF5	Helps dissociate eIF2, eIF3 eIF4C		
	elF6	Helps dissociate 60S subunit from inactive ribosomes		
Elongation factors				
EF-Tu	eEF1α	Delivery of aatRNA to ribosomes		
EF-Ts	eEF1βγ	Aids in recycling factor above		
EF-G	eEF2	Translocation factor		
Release factors				
RF1	eRF	Release of completed		
RF2		Polypeptide chain		
RF3		1477		

Termination

-stop signal on mRNA read by protein release factors causes release of completed polypeptide chain -RF1 recognizes UAA and UAG -RF2 recognizes UAA and UGA -RF3 binds GTP and enhances action of RF1 and RF2 -binding of RF1-RF3-GTP (or RF2-RF3-GTP) to ribosome causes hydrolysis of peptidyl-tRNA -GTP is then hydrolyzed and the release factors dissociate from ribosome

ANTIBIOTICS INHIBITING TRANSLATION

The bacterial ribosomal structure and the accessory functions differ in many respects from its eukaryotic equivalent. The translation reaction itself can be subdivided into three parts:

1.Formation of the initiation complex, blocked by Streptomycin and Tetracyclins (the latter inhibiting binding of aa-tRNA to the ribosomal A- site at the 30S ribosomal subunit.

2.Introduction of aa-tRNA and synthesis of a peptide bond, inhibited by puromycin (leading to premature termination) and chloramphenicol (probably inhibiting the peptidyltransferase).

3.Translocation of the mRNA relative to the ribosome blocked by erythromycin and fusidic acid (the latter preventing release of EF-G/GDP.