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B Abstract A genetic basis for interindividual variation in susceptibility to hu-
man infectious diseases has been indicated by twin, adoptee, pedigree, and candidate
gene studies. This has led to the identification of a small number of strong genetic
associations with common variants for malaria, HIV infection, and infectious prion
diseases. Numerous other genes have shown less strong associations with these and
some other infectious diseases, such as tuberculosis, leprosy, and persistent hepatitis
viral infections. Many immunogenetic loci influence susceptibility to several infectious
pathogens. Recent genetic linkage analyses of measures of infection as well as of in-
fectious disease, including some genome-wide scans, have found convincing evidence
of genetic linkage to chromosomal regions wherein susceptibility genes have yet to be
identified. These studies indicate a highly polygenic basis for susceptibility to many
common infectious diseases, with some emerging examples of interaction between
variants of specific polymorphic host and pathogen genes.

INTRODUCTION

Analysis of the genetic basis of susceptibility to major infectious diseases is poten-
tially the most complex area in the genetics of complex disease. Not only are these
highly polygenic diseases with important, if not overwhelming, genetic compo-
nents, but there is well documented interpopulation heterogeneity; and in all cases,
one essential required environmental factor with, almost always, its own genome in
play. Nonetheless, steady progress is being made in untangling the complex inter-
play of host genes and microorganism that results in some striking interindividual
variation in susceptibility. :

This is one of the oldest areas of complex disease genetics in humans, with
one major susceptibility locus for malaria analyzed almost 50 years ago (9).
Since the 1930s, several twin studies have supported a substantial role for host
genetics in variable susceptibility to tuberculosis (35,43,78), leprosy (33), Heli-
cobacter pylori infection (93), and hepatitis B virus persistence (88). Early reports
in which malaria (71) and tuberculosis microbes (69) were deliberately or acci-
dentally administered to large numbers of nonimmunes have documented clear
variation in susceptibility to these pathogens. A large adoptee study has also
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supported the importance of host genetic factors in susceptibility to fatal infectious
diseases in Northern Europeans (152). However, good estimates of the increase
in risk to siblings of affected individuals compared to the general population (the
As value) are generally lacking for infectious diseases; and where available, it
may be difficult to dissect the genetic from the environmental contributors to this
value.

In the 1980s, HLLA analysis was added to hematologic candidate gene studies of
malaria; and in the 1990s, more and more non-MHC candidate genes began to be
assessed. In recent years, the first genome-wide linkage studies have been reported,
and the utility of this approach is now clear. This review begins with consideration
of these genetic linkage studies before tackling the large number of reports of
association studies with candidate genes. The field has now expanded to the point
where no review article of this size can hope to be comprehensive. Priority is given
to papers published in the last three years; but even among these, there is inevitably
some personal selection. Also excluded from consideration is the large literature
on monogenic disorders that give rise to immunodeficiency and infectious disease
susceptibility. These disorders, like studies of gene knockout mice and suscepti-
bility gene mapping in other species, may identify important candidate genes for
analysis in common infectious diseases; but as these disorders are invariably rare,
the analytic approaches involved are different. To date, there is surprisingly little
overlap between the loci involved in monogenic immunodeficiencies and those
implicated as common susceptibility loci.

Analysis of infectious disease susceptibility has long been of interest to evolu-
tionary biologists, and the debate over the extent to which MHC polymorphism
may have been driven by infectious pathogens is well rehearsed. Two further ob-
jectives have become more prominent in recent years. The first, in common with
much of genomics, is the identification on new pathways of pathogenesis or re-
sistance that may eventually lead to new prophylactic of therapeutic agents for
these infections. For examples, industrial interest in blockers of the chemokine
receptor, CCRS, has been encouraged by some striking genetic findings, and the
design of investigational vaccines for malaria has been influenced by HLLA associ-
ation studies. The second is the potential for genetics studies to facilitate targeting
of therapeutic or prophylactic interventions. For example, IL-10 genotypes might
be of value in choosing which patients with chronic hepatitis should receive a-
interferon therapy (46), or mannose-binding lectin-deficient individuals could be
prioritized for pneumococcal vaccination. However, for a more useful assessment
of risk profile, many loci will likely need to be evaluated.

GENETIC LINKAGE STUDIES

Some of the first family studies of the genetics of complex disease searched for
linkage and association of the HLA region with the mycobacterial diseases lep-
rosy and tuberculosis. Whole genome scans have more recently been undertaken,
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initially for the phenotype of parasite burden and subsequently for disease mani-
festations.

Schistosomiasis

Complex segregation analysis of Brazilian families with Schistosoma mansoni
infection provided evidence that a major gene could determine susceptibility to
high parasite burdens in this region. Careful estimation of the major environmental
risk factor, water contact, for this infection allowed this variable to be included in
the genetic analysis. A whole genome scan of 11 families with 246 microsatellite
markers found a single region of linkage on chromosome 5q31-q33 (96). A para-
metric linkage analysis in these families revealed a multipoint lod score in excess of
4.5, mainly accounted for by two extended pedigrees (95). This region of chromo-
some 5q contains a cluster of cytokine and other immunologically important loci,
particularly those for the TH2-type cytokines IL-4, IL-9, and IL-13 and also the
colony stimulating factor-1 receptor. Immunological studies have suggested a key
protective role of TH2-type immune responses and IgE antibodies in protection
against this parasitic disease. Further evidence for a role for this chromosomal re-
gion in susceptibility to S. mansoni was found in a study of West African families,
suggesting that the relevant susceptibility loci are not limited to a small number of
Brazilian pedigrees (117).

The Dessein and Abel group have also studied disease manifestations resulting
from S. mansoni infection (42). An analysis of hepatitic periportal fibrosis in
Sudanese families employed initially complex segregation analysis that provided
evidence of a codominant major gene with a susceptibility allele frequency of 0.16.
Subsequent linkage analysis of a subset of these pedigrees assessed four candidate
chromosomal regions for evidence of linkage. A lod score of 3.12 was reported
for the 6q22-q23 region that includes the interferon-y -receptor-1 gene. The anti-
fibrogenic role of y interferon suggests a potential mechanism for the linkage, but
association with this gene has not been reported.

Malaria

The success of case-control studies in identifying numerous loci associated with
resistance to malaria suggests that this disease is highly polygenic and that genome-
wide studies for new susceptibility loci should be worthwhile. Jepson et al. found
evidence of linkage of clinical malaria to the MHC in a study of Gambian children
(75), and her twin studies indicated a major role for non-MHC loci in determining
some cellular immune responses to the malaria parasite (74). Studies in Burkina-
Faso, West Africa, have shown consistent parasitological, clinical, and immunolo-
gical differences between ethnic groups in Plasmodium falciparum infection rates,
malaria morbidity, and prevalence and levels of antibodies to various P. falciparum
antigens, and these could not be ascribed to known susceptibility loci (114, 115).
Yet, no genome-wide linkage analyses of malarial disease have been reported. This
in part reflects operational difficulties. Although hospital-based studies of severe
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malaria cases and matched controls have frequently been undertaken in regions of
hyperendemic malaria, recruitment of affected sibling pairs with severe malaria
is more challenging for an acute infectious disease. Often hospital records will
not allow reliable ascertainment of another sibling who has had strictly defined
severe malaria in earlier years. Recruitment of sibling pairs with nonsevere clinical
malaria is more feasible; but in general, clearer genetic associations have been
observed with severe malaria than with the much more prevalent phenotype of
clinical malaria.

However, progress has been made in analysis of another malarial phenotype, that
of P. falciparum parasite density. In highly endemic regions, with age individuals
acquire substantial anti-disease immunity to P Jalciparum that allows them to
tolerate high peripheral blood parasite densities with often minimal or no clinical
manifestations. Studies have now addressed the genetic regulation of this level
of parasite density by frequent sampling of populations in endemic areas and
family segregation and genetic linkage analysis. An early complex segregration
analysis of 42 Cameroonian families suggested a single strong susceptibility locus
(1), but this was not apparent in a larger study of families from Burkina Faso
where a marked age effect was noted (131). Linkage analysis of four candidate
regions in nine Cameroonian families showed some weak evidence of linkage
to the 5q31-33 chromosome regions (53). Analysis of 154 sibs from 34 Burkina
Faso families for 5q31-33 markers using nonparametric analysis showed stronger
evidence of linkage (P < 0.001), supporting the view that a gene or genes in this
region may influence parasite density. Together with evidence for linkage to this
interval in asthma and atopy (173), the reported linkage studies of both schistosome
and malarial parasite density justify further detailed analysis of the chromosome
5q11-13 region to search for associated and potentially causative loci.

Mycobacterial Diseases

Mycobacterial diseases were among the first to show evidence of both linkage and
association with the HLA region, and early examples of the use of a variant of the
increasingly popular transmission disequilibrium test may be found in these studies
(40, 148, 162). More recently, family linkage analysis was used in the identifica-
tion of the interferon-y -receptor-1 gene as the susceptibility locus for rare familial
susceptibility to usually nonpathogenic atypical mycobacteria and the BCG vac-
cine (77,121). Mutations in the IL-12 receptor beta-1 gene have more recently
been causally associated with this phenotype and with monogenic susceptibility
to Salmonella intections (11,76). In a study of an extended Canadian aboriginal
family with unusually marked susceptibility to tuberculosis, linkage to the chro-
mosome 2q35 region was identified (59). However, linkage analysis of this region
in families from other regions with other mycobacterial phenotypes has provided
mixed and generally negative results (see below) (3,7, 18,26, 134, 144, 167).
The first whole genome scan for an infectious disease, tuberculosis, was reported
by Bellamy and colleagues (18,23). In the first stage of this two-stage study,
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92 African affected sibling pairs with tuberculosis were studied, mainly families
from Gambia (23). Several chromososomal regions, including the MHC, initially
showed weak evidence of linkage, and these were reassessed in a second-stage
study. In this stage, 81 predominantly South African sibling pairs were studied
because of the limited availability of more West African sibling pairs. Nonetheless,
two of these chromosomal regions, around bands 15q11 and Xq27, again showed
evidence of linkage, with overall lod scores of the order of 2.0 (18). The location
of susceptibility genes at these chromosomal regions was further supported by an
independent analysis, employing common ancestry using microsatellites mapping.
In this variant of homozygosity mapping, chromosomal regions are assessed for
increased homozygosity in cases that are compared to controls using Goldstein’s
genetic distance as a sensitive measure of inbreeding at each locus (18). Several
positional candidate genes in these regions are under investigation and linkage
disequilibrium mapping is being used to search for the putative susceptibility
loci. The X-chromosome linkage may relate to the observation in Africa and
other continents that clinical tuberculosis is more frequently found in males than
females.

Negative findings in this genome-wide analysis are also of interest. Despite
speculation on the potential role of NRAMP1 as a major susceptibility locus for
tuberculosis in humans, no support has been found for this possibility in the link-
age analysis of these African families. Although there is a clear association of
clinical tuberculosis with the HLA class II region in several Asian studies, sig-
nificant linkage to the MHC was not found in the final analysis of these African
families. Although this lack of linkage does not exclude susceptibility genes in
these chromosomal regions, it does limit the potential magnitude of their effects.
Finally, placed alongside the estimates of the magnitude of a host genetic effect
suggested for tuberculosis by early twin studies (35,43,78), the lack of a clear
major locus for tuberculosis in these African families suggests that much or most
of the genetic component, at least in Africans, may be dispersed among many loci,
with no locus or chromosomal region sufficiently important to show clear linkage.
This inference, together with the evidence from candidate gene studies of malaria
(63) that show that susceptibility to this disease is also highly polygenic, raised the
possibility that, in general, susceptibility to major infectious disease might be too
polygenic for major loci to be mapped convincingly using the available genome-
wide linkage strategies. Fortunately, other data soon contradicted this negative
View.

Leprosy is one of the infectious diseases most amenable to genetic linkage
analysis. In a study of approximately 250 affected sibling pairs from South India,
it was possible to recruit almost all the parents in these families, and a genome scan
using almost 400 microsatellite markers was undertaken (146). One area of strong
linkage with a lod score over 4.0 was identified on chromosome 10p13. In contrast,
the MHC showed only weak evidence of linkage, despite evidence of association
with HLA-DR?2 within these families. There are several positional candidate genes
within the chromosome 10 region of linkage, and further fine mapping studies are in
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progress. Estimation of the locus-specific sibling risk in these families suggested
that this region may account for a substantial proportion of the overall genetic
component in this geographic region. The latter was estimated indirectly in a
different South Indian population (60, 132). Nonetheless, this study provides the
clearest indication yet that genome scans can provide a useful approach to major
gene identification in a major infectious disease, despite the polygenic nature of
these diseases.

Viral Diseases

HIV infection is now frequently investigated by human geneticists, but the rarity
of multicase families has generally prevented useful linkage analyses. An excep-
tion is an HLA study of 95 HIV-infected hemophiliac brother-pairs where HLA
concordant sibling pairs and those sharing one but not zero HLA haplotypes were
significantly concordant in their rate of CD4 T-cell number decline (85).

One of the clearest dichotomies in the response to an infectious pathogen is
the ability of most, but not all, individuals infected by the hepatitis B virus to
clear this infection. In most populations, 5%-20% of individuals fail to clear the
virus and develop a chronic carrier state that substantially increases their risk of
chronic liver disease and hepatocellular carcinoma. A small Taiwanese twin study
provided some evidence of a host genetic influence of viral clearance (88). Whole
genome scans to examine the phenotype of persistent HBV infection have now
been undertaken in both Gambian and Italian populations. Inthe European families,
there was evidence of linkage to chromosome 6q (50). The West African study
assessed almost 200 Gambian sibling pairs and identified a linkage (lod score >
3.5) to aregion on chromosome 21 that encodes numerous cytokine receptor genes
(L. Zhang, A. Frodsham, U. Dumpis, S. Best, A. Hall, H. Whittle, B. Hennig,
S. Hellier, M. Thursz, H. Thomas, & A. Hill, unpublished data). Preliminary
evidence of association with a variant of one of these genes has been found in
these families, and the availability of a full sequence of this chromosome should
facilitate further analysis. Interestingly, it has been recognized for over 30 years
that individuals with trisomy 21 have a higher prevalence of chronic HBV infection
(28), suggesting that the same gene or genes on chromosome 21 may underlie this
finding and the linkage result.

CANDIDATE GENE STUDIES

Human Leukocyte Antigens

Studies of HLA and malaria in Gambia helped to establish the view that natural
selection by infectious disease has contributed to the maintenance of the remark-
able allelic diversity of HLA class I and II loci (64, 65). Gilbert et al. (57) have
extended these studies to assess association of malaria parasite variants with HLA
class I type. When parasites were divided into strains according to allelic types
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of an HLA class I testricted epitope in the major coat protein of the sporozoite,
an association was observed between parasite type and the relevant HLA class
I molecule, HLA-B*35. A remarkable nonrandom distribution of parasite allelic
type, termed cohabitation, was documented in which parasite types that could mu-
tually antagonize CD8 T-cell responses in primary (129) and effector T-cell assays
(57) were found together more frequently than expected in mixed parasite infec-
tions. A mathematical model was employed that supported the inference that the
immunological mechanisms documented in vitro may be maintaining the nonran-
dom distribution of parasite types through HLA class I restricted T-cell antiparasite
responses. This study of coevolution provides insight into the potentially power-
ful influences that HLA restricted responses may exert on pathogen diversity and
population structure and suggests that further analyses of host HLLA and pathogen
diversity in the same sample sets should be instructive.

Some further evidence of HLA association with the rate of progress of HIV
infection has been provided by several recent studies. HLA-B*5701 was found in
11 of 13 long-term nonprogressors with low viral loads, but only 10% of controls
(111). Inastudy of large U.S. cohorts, HLA-B*35 and Cw*04 were associated with
rapid progression to AIDS-defining illnesses (32). In a powerful study of 75 rapid
progressors and 200 long-term nonprogressors, representing the extremes of this
spectrum, a variety of alleles were associated with protection and susceptibility
(60a). HLA-A29 and -B22 were significantly associated with rapid progression;
whereas B14, C8, and, though less strongly, B27, B57, and C14 were protective.
Interestingly, in contrast to other chronic viral diseases, such as persistent hepatitis
B and C infection, HLA class II associations have been less evident in these
studies of HIV/AIDS. In contrast, in a rare study of susceptibility to HIV/AIDS in
Africans (92), HLA-A2 related subtypes were associated with resistance to disease
progression, and the class IT type HLA-DR1 was associated with resistance to HIV
infection in Nairobi commercial sex workers.

Further studies of Europeans (156, 166) have supported previous findings
(10,113, 126, 175) that the linked HLLA class II alleles, HLA-DRB1*11 and HLA-
DQB1*0301, are associated with resistance to persistent HCV infection; this is
now probably the most consistently documented HLLA association with a viral
disease. In a cohort study of infection with the HTLV-1 retrovirus, HLA-A2 was
strongly associated with a reduced risk of developing HTLV-associated myelopa-
thy, and viral load also reduced in individuals with this class I type (73). Other
types, HLA-B*54, Cw*08, and DRB1*0101, showed less strong associations (72).
In this study and the Carrington et al. study of HIV infection in American cohorts
(32), the influence of HLA heterozygosity was examined. A graded protective
effect of HLLA-A, -B, and -C heterozygosity against disease progression to AIDS
and death was found with heterozygotes at all three loci showing the slowest
progression (32). In the study of HTLV-1 infection, individuals heterozygous at
all three HLLA class I loci had significantly reduced viral load compared to other
genotypes (72). Together with an association of HLLA class II heterozygosity in
HBY infection (157), these data provide important support for the proposal (44)
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that heterozygote advantage against viral infectious disease plays some part in
maintaining the polymorphism of HLA loci.

Two studies have analyzed further the well-established association of HLA-
DR2 with susceptibility to tuberculosis as well as to leprosy in Indian populations
(107, 130). Analysis of HLA-DR?2 subtypes showed that the HLA-DRB 1 * 1501, but
not the *1502 allele, is associated with susceptibility to tuberculosis, but the HLA-
DQB 10601 allele in strong linkage disequilibrium with HLA-DRB1*1501 is also
strongly associated. In a small study of tuberculosis in Vietnam, a susceptibility
association with the rare HLA-DQB1*0503 allele was reported (58). Intriguingly,
an HLA-DR?2 association has now been reported with a third mycobacterial dis-
ease. In North American AIDS patients, HLA-DRB1*1501 was associated with
an accelerated onset of disseminated Mycobacterium avium complex disease (86),

suggesting a common mechanism underlying these three mycobacterial disease
associations.

Cytokines and Their Receptors

Since the initial report of a TNF polymorphism association with cerebral malaria
by Kwiatkowski & colleagues (105), there have been several studies of polymor-
phism in cytokines and infectious diseases. The promoter variant allele at position
-308 has now been associated with cerebral malaria, mucocutaneous leishmania-
sis, leprosy type, and scarring trachoma in various populations (31, 36, 105, 138).
Some, but not all, of these studies analyzed flanking HLA polymorphisms to allow
independent assessment of the relevance of the TNF promoter variant. Some func-
tional analyses have found evidence of increased transcription (170) by the rarer
TNF?2 allele at this -308 position, but this remains controversial (4). Analysis of the
other common clinical presentation of severe malaria in African children, severe
malarial anemia, has demonstrated an association of the variant allele at position
-238 of the TNF promoter with this phenotype (106), suggesting that these different
complications of malaria infection are influenced by separate genetic factors near
the TNF gene. The -238 variant has also been associated with chronic hepatitis B
virus infection in Europeans (67).

Another TNF promoter variant has recently been associated with cerebral
malaria (80). In this case, the polymorphism at position -376 altered binding of a
transcription factor, identified as OCT-1, to that region of the promoter and resulted
in altered gene expression in a human monocytic cell line. Although relatively un-
common, this variant was associated with a fourfold increase in risk of cerebral
malaria after allowing for flanking polymorphisms.

Interleukin (IL)-1 genetic variation has been investigated in several autoim-
mune diseases, and evidence of its relevance to infectious disease susceptibility
has been recently reported. A twin study has demonstrated that host genetic fac-
tors influence susceptibility to H. pylori infection (93), and a study of IL-1 beta
polymorphisms has now found association with complications of this chronic gas-
tric infection. Two polymorphisms in near-complete linkage disequilibrium were
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associated with both H. pylori-induced hypochlorhydria-and increased risk of
gastric cancer, and one of these variants is a TATA box promoter polymorphism
that was found to alter DNA-protein interactions (47). Two studies have also re-
ported preliminary evidence that polymorphism in the IL-1 beta and the flanking
IL-1 receptor antagonist genes may affect either risk or clinical presentation of
tuberculosis (20, 169).

Three single nucleotide polymorphisms (SNPs) in the promoter of the IL-10
gene and two flanking microsatellite polymorphisms have been investigated in
several autoimmune disorders. The variants at position -1082, -819, and -592 are
G to A changes, and assays of IL- 10 production suggest that the GGA haplotype is
associated with higher [L-10 levels (37, 159). The variants associated with higher
IL-10 production are associated with clearance, rather than persistence, of hepatitis
B virus in both West Africans and Europeans (L. Zhang, A. Frodsham, S. Knapp,
H. Thomas, M. Thursz, & A. Hill, unpublished). A study of response to «-interferon
therapy in hepatitis C infected patients also suggested that the A allele at -592,
associated with. lower IL-10 production, is a marker of good response to this
intervention (46). In American HIV-infected cohorts, the presence of the -592 A
allele was associated with more rapid disease progression, particularly late in the
course of infection (145).

An SNP at position -589 of the IL-4 promoter has been investigated in several
diseases, in view of its potential relevance to TH1-TH2 switching of the cellular
immune response. In a study of Japanese HIV-infected individuals, homozygotes
for the T allele were more likely to develop syncytium-inducing strains of HIV
than other genotypes (120). These strains use the CXCR4 coreceptor, appear later
in HIV infection, and their emergence represents a marker of more rapid disease
progression. In this study, no association of this viral phenotype with RANTES or
IL.-10 promoter variants was observed.

There have been fewer reported studies of variation in cytokine receptors than
cytokine genes in common infectious diseases. However, it is clear that rare inacti-
vating mutations in the interferon-y-receptor-1 and the IL-12R 81 genes are asso-
ciated with susceptibility to usually nonpathogenic mycobacteria and Salmonella
species (11,76,77,121). There is, to date, no evidence from population studies
that common variants in the interferon-y-receptor genes affect susceptibility to
tuberculosis, although several groups have addressed this question.

Chemokines and Their Receptors

Thediscovery in 1996 of the resistance to HI'V infection of Caucasian homozygotes
for a 32-base pair deletion in CC chemokine receptor 5 (CCR5) (41, 90, 140) has
led to numerous studies of chemokine receptors, and more recently chemokine
polymorphisms, in HIV infection and disease. It soon became apparent that this
variant is not significantly protective against infection in the heterozygous state, but
that heterozygotes manifest slower disease progression to AIDS and death, at least
among homosexuals but possibly not among hemophiliacs (39, 41, 68, 109, 177).
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Rare homozygotes infected by HIV-1 have been described so protection is not
absolute (16). Sadly, in regions of Africa and Asia where the epidemic is most
marked, the variant is essentially absent (100).

A valine-to-isoleucine change in the first transmembrane region of the flanking
CCR2 gene is also associated with delayed disease progression but not altered
susceptibility to HIV infection (151). This protective effect has now been confirmed
in another U.S. cohort and in Swiss and British studies (45,81,133). In a large
Texas-based study, this association was observed in African Americans, but not
Caucasians, with HIV infection (118). The lack of association in another published
study (110) may be due to analyses of a seroprevalent rather than a seroincident
cohort (150), as this CCR2 polymorphism may be most relevant early in HIV
infection. In a study of the genetics of susceptibility to HIV or AIDS in Africans,
Anzala et al. found an increased frequency of the protective CCR2 allele in Kenyan
long-term nonprogressors (14). A possible molecular mechanism underlying this
association was suggested by the finding that in vitro CCR2 can heterodimerize
with CCRS but that the CCR2 isoleucine variant, unlike the wild type, cannot
heterodimerize with CXCR4 (108).

Several studies have now found that variants in the promoter region of CCRS
also influence the rate of disease progression. An A to G change at position 59029
[in the numbering of Genbank clone U95626, equivalent to position 303 as num-
bered in the study by Martin & colleagues (99) as well as 2459 as numbered in
the report by An et al. (13)] of the CCRS promoter region was associated with
reduced promoter activity in Jurkat cells (104). G/G homozygotes progressed to
AIDS more slowly than A/A homozygotes, particularly in the absence of the 32-bp
CCRS deletion and CCR2-isoleucine variants (104). In parallel, haplotypes of eight
other SNPs in the CCRS promoter region were defined, and one of these, termed
P1, was significantly associated with accelerated progression to AIDS (99). The P1
haplotype and the 59029 A allele are in very strong linkage disequilibrium in both
Caucasisans and African Americans (13). An Australian study found that 59029
A/A homozygotes were less frequent among long-term nonprogressors (34), con-
sistent with the U.S. datasets. Among African Americans, the $9029 A association
with rapid progression was also observed, but in contrast to Caucasians, the effect
was dominant rather than recessive (13). Evidence of further complexity in the
CCRS5 promotor and possible population differences in haplotypic associations
was provided by an evolutionary analysis of extended haplotypes among a Texas
cohort (119). Analysis of another promoter variant, a C to T change at position
590356 that is more prevalent in African Americans, showed increased perina-
tal transmission of HIV-1 from mothers to 21 African American offspring who
were homozygous for the variant T allele (82). In a study of French HIV-infected
individuals who were homozygotes for a coding change at position 280 of the
fractalkine receptor, CX3CR 1, showed increased rates of progress to AIDS (48).
However, analysis of U.S. cohorts failed to replicate this association and instead
suggested that heterozygotes for this change might have a reduced rate of disease
progression {103).
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Variation in the regulatory regions of two chemokine genes has now been
associated with HIV infection or disease progression. The promoter of the gene
for RANTES, one of the ligands for CCRS, was sequenced in Japanese subjects
and two promoter variants at positions -28 and -403 were identified. The G al-
lele at position -28 showed increased expression in transfection assays and was
associated with delayed disease progression in Japanese (89). The -403 position
change has also been found to be of functional significance in in vitro assays and
has been associated with atopic dermatitis, atopy, and asthma (51, 122). Inthe U.S.
Multicenter AIDS Cohort Study, the A allele at -403 of the RANTES promoter
was associated with an increased risk of HIV infection but with a slower rate
of disease progression to AIDS (102). Clearly, further studies of these RANTES
promoter variants are required to address this complexity. More heterogeneous
results have been reported for a 3’-UTR variant in the gene for stromal-derived
factor-1, SDF-1, the principal ligand for CXCR4. Winkler et al. initially reported
that homozygotes for a variant A SNP were highly significantly protected from
disease progression to AIDS (172). Five studies have now failed to replicate this
strong protective effect, and four of them find evidence of greater disease suscep-
tibility of 3-UTR A/A homozygotes at this locus (15,29, 45, 118, 163). A London
cohort study showed no SDF association (45), but a Texas cohort showed that A/A
homozygotes had faster progression to death (118). Balotta et al. (15) associated
A/A homozygosity with low CD4 T-cell counts, Brambilla et al. (29) observed a
more rapid late progression of A/A homozygotes; and in a Dutch cohort (163),
homozygotes progressed more rapidly to AIDS but not to death.

NRAMP1

Genetic linkage studies in mice led to the mapping of a gene, initially termed
Lsh/Ity/Bcg, that influences early resistance to several intramacrophage pathogens,
Leishmania donovani, Salmonella typhimurium, and some strains of M. bovis
BCG (25). This gene was positionally cloned by Gros and colleagues in Montreal
and termed Nramp1 (natural-resistance-associated macrophage protein-1) (165).
Cellular and molecular studies have now indicated that Nramp1 is expressed in both
macrophages and neutrophils, is a transporter of divalent cations, and is localized
to the phagolysosomal membrane (149). Recent studies from the Gros laboratory
have suggested that Nramp1 can pump manganese ions out of the phagolysosomal
space in a pH-dependent manner (70), although inward pumping has also been
advocated (27). Iron and other ions may also be pumped out (17), thereby perhaps
modifying mycobacterial viability.

The susceptibility allele of Nramp1 in mice bears a glycine-to-arginine substitu-
tion at position 105, leading effectively to a null phenotype (164). The clear effect
of this change on susceptibility to BCG Montreal infection (149), together with
some complex segregation analysis of human mycobacterial disease that suggested
a major gene effect (2), led to speculation that the human homologue, NRAMPI,
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might be a major gene for human mycobacterial disease. It is now increasingly
clear that this speculation is generally incorrect.

Recent linkage studies in mice have shown that the major gene effect evident in
studies of BCG strains is not observed in challenge with M. tuberculosis (123), and
other loci have now been mapped that do affect tuberculosis susceptibility in mice
(84). Whole genome scans for tuberculosis in West and South Africans (18) and
for leprosy in India (146) have not found significant linkage to the chromosome 2
region encoding the human NRAMPI1 gene. However, linkage to leprosy has been
reported in a small number of Vietnamese families (3) and in analyses of skin test
responses (Mitsuda reactions) to leprosy antigens in Vietnamese (7). No evidence
of association with NRAMP1 variants was reported in these studies. Furthermore,
ina large aboriginal Canadian family with multiple affected individuals significant
linkage to the NRAMP1 locus has been found (59). Interpretation of such positive
linkage data is complicated by the finding that in mice a locus termed Sst1 has
been mapped near to the NRAMPI locus on chromosome 1 as a tuberculosis
susceptibility locus (84).

However, several studies have now found evidence for association of NRAMP1
polymorphisms with mycobacterial disease. The largest study, undertaken in
Gambians, found association with several variants, in particular a 4-bp insertion-
deletion polymorphism in the 3’ untranslated region (21). Recently the same vari-
ants have been associated with tuberculosis in independent studies of Koreans
(139) and Japanese (52). In Bengal (136) and Mali (107a), no association was
found with leprosy per se; but in the latter study, there was evidence of a possible
association with leprosy type.

How may these apparently heterogeneous reports be reconciled? With the ex-
ception of the Canadian aboriginal family (59), there appears to be no evidence of a
major effect of NRAMPI or a flanking gene on general tuberculosis susceptibility.
Evidence of genetic association in several tuberculosis studies exists, but the mag-
nitude of these effects is modest and compatible with the absence of significant
linkage in family studies. Indeed, the man-mouse difference may be more apparent
thanreal, in that small differences in susceptibility to tuberculosis between the sus-
ceptible and resistant mouse strains might be missed in linkage studies. It remains
possible that the associations observed, like the positive linkage data, result from
linkage disequilibrium with variation in some flanking gene (97). However, similar
allelic associations in Japanese and Africans and the known function of NRAMP1
make this gene still the most parsimonious culprit. A different issue is whether
the associations result from a primary effect of the NRAMP1 gene on M. tubercu-
losis susceptibility. Variable degrees of exposure to environmental mycobacteria
may underlie the variable efficacy of BCG vaccine against tuberculosis in different
populations, and a primary effect of NRAMP! variation on other mycobacterial
infections might conceivably result in altered tuberculosis susceptibility.

Recently, associations have been reported with other diseases, including HIV
infection in Columbians (98), juvenile arthritis in Latvians (142), and sarcoidosis
in African Americans (94).
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Vitamin D and Other Receptors

Polymorphism in the vitamin D receptor gene was initially extensively investigated
in osteoporosis and other bone disorders (116). Although there are many apparently
conflicting reports of associations with SNPs in the 3’ region of this gene, overall
it appears that, at least in some populations, variation at a Taq I site in codon 352
(with alleles denoted T and t) and at flanking sites is associated with susceptibility
to reduced bone mineral density. Several studies have now suggested that this and
perhaps other variants of the VDR gene may be associated with susceptibility
to various infectious diseases. In a case-control study of pulmonary tuberculosis
in Gambia, homozygotes for the rarer tt genotype were reduced in frequency in
the cases, suggesting a protective effect (19). Some support for this conclusion
was provided by a study of a Gujarati tuberculosis patient in West London where
both the T allele and deficiency of 25-hydroxycholecalciferol were associated with
tuberculosis (168). In vitro studies have reported that dihydroxy vitamin D is one
of the few mediators identified that can lead to a reduction in the growth of M.
tuberculosis in human macrophages (135).

However, this gene may also, or alternatively, influence the type of cellular
immune response evoked by pathogens. In a case-control study of leprosy in Ben-
galis, the TT and tt genotypes were associated with the two polar forms of leprosy,
lepromatous and tuberculoid (136). As the latter form is associated with a stronger
cellular immune response to M. tuberculosis, the tt genotype here and in the tu-
berculosis studies may be modulating the predominant type of cellular immune
response evoked. 1,25-dihydroxy vitamin D has been found to affect IL-12 pro-
duction by macrophages and to modulate dendritic cell maturation (38, 127). In
Gambians, the tt genotype was also associated with a greater rate of viral clear-
ance in those infected by the hepatitis B virus (19), again consistent with a stronger
cellular immune response. However, vitamin D stores are influenced by both diet
and sunlight exposure, providing opportunities for important gene-environment
interactions and suggesting that there may be substantial heterogeneity in VDR
infectious disease associations between populations. Variation in the VDR gene has
also been associated with susceptibility to Mycobacterium malmoense pulmonary
disease (56), localized early-onset peridontitis (61), and, which is intriguing, to
Crohn’s disease (147), a granulomatous disease of the intestine for which a possible
mycobacterial or other infectious etiology has been mooted.

The immunoglobulin receptor FcyRlIla, CD32, has a common dimorphism at
position 131 where the variant with histidine has higher opsonic activity for IgG2
antibodies than the arginine 131 variant. In 1994, small clinical studies by the van
de Winkel group suggested that children homozygous for the arginine variant may
be at increased risk of recurrent bacterial infection (141) and meningococcal septic
shock (30). An association with meningococcal disease has now been reported in
a small study of Slavic children over 5 years of age (128). A possible increased
risk of bacteremic pneumococcal disease associated with homozygosity for the
arginine variant has also been suggested (174; S. Segal, K. Knox, D. Crook, &




386

HILL

A. Hill, unpublished data). If this genotype is associated with susceptibility to
disease caused by several encapsulated bacteria, this would suggest that some
other fairly strong positive selective pressure has been maintaining the arginine
variant at high frequencies.

A proposed role for the class B scavenger receptor CD36 in the downregulation
of dendritic cell activation following malaria parasite clearance raised the possibil-
ity that some common deficiency variants of this gene observed in Africans might
have been selected through enhanced malaria resistance (161). However, African
case-control study data have not, so far, supported this idea (6).

Mannose-Binding Lectin

Mannose-binding lectin (MBL) (also known as mannose-binding protein) is a
serum collagenous lectin that has a remarkably high prevalence of alleles and
genotypes that produce little or no protein as a result of mutations in codons 52,
54, or 57 of the gene (160). Heterozygotes for one or other of these variant alleles
are found at frequencies in the order of 0.33 in major population groups. Homozy-
gotes or compound heterozygotes for the variant alleles (collectively sometimes
termed functional mutant homozygotes) produce very little or no MBL and, thus,
have impaired opsonization of some pathogens and lack the ability to activate
complement through MBL-associated serine proteases. This manifestly functional
genetic variation has led to searches for MBL association with many infectious
diseases.

Although initially it was proposed that MBL deficiency led to susceptibility to
recurrent infections in young children, evidence supporting this is weak. Studies
of children in London suggested that both heterozygotes and homozygotes may
be susceptible to a variety of infections and to menigococcal disease (62, 153), but
the ethnic complexity of these study populations and the unusual distribution of
specific genotypes in the groups raises the possibility of significant confounding
by population stratification (154). A Danish study suggested that functional mutant
homozygotes show increased susceptibility to HIV infection and progress to death
more rapidly following diagnosis of AIDS (55). A difficulty with these and some
other studies in the literature is the surprisingly low frequency of functional mutant
homozygotes in the control groups employed, sometimes as low as 1%, when the
expectation from the frequency of heterozygotes is about 5%. However, a Finnish
study also reported a higher frequency of MBL homozygotes in HIV-infected
individuals than controls (125), and a small study of Italian children found.an
association of codon 54 heterozygotes with an increased rate of progression to
AIDS but not with infection (12). A study in London of HIV disease progression
failed to find any genotypic association (101). Finally, in an Amsterdam cohort,
there was a suggestion that MBL heterozygotes might progress more slowly to
AIDS and death. Overall, this heterogeneous literature fails to provide convincing
evidence, as yet, that MBL genotype really influences any of these phenotypes.

Several groups have studied MBL genotypes and tuberculosis, following a
suggestion that MBL deficiency might have been maintained evolutionarily by
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a reduced capacity of mycobacteria to invade macrophages in the absence of
MBL, leading to resistance to tuberculosis (54). Small studies in India and South
Africa suggested that homozygotes may be susceptible to tuberculosis (143) and
that codon 54 heterozygotes may be protected from tuberculous meningitis (66),
but a larger study in Gambia (22) found no genotypic association. Recently, a
Mexican study of surfactant genes expressing collectins that are evolutionarily
and functionally related to MBL has suggested that variation in these genes may
influence tuberculosis susceptibility (49).

Evidence from a study in London that MBL codon 52 heterozygotes may be
susceptible to hepatitis B virus persistence (155) was not supported by data from
Gambia (22), and a weak association of MBL heterozygotes with severe malaria
susceptibility seen in Gabon (91) was not found in a larger study of Gambians
(22).

In an Oxford-based study of Caucasian hospital patients with invasive pneumo-
coccal disease, we have recently found a significantly increased frequency of MBL
functional mutant homozygotes in cases, suggesting a protective role for MBL in
this disease (S. Roy, K. Knox, D. Crook, & A. Hill, unpublished). But protective
associations with MBL deficiency genotypes have yet to be identified. Thus, the
enigma of why multiple MBL deficiency alleles are so prevalent remains.

Hemoglobins and Blood Groups

There has been evidence for many years that heterozygotes for sickle hemoglobin
and for B thalassemia enjoy protection from severe malaria, but data on the other
common hemoglobin variant in Africa, hemoglobin C, have been lacking. This is
distributed more focally than hemoglobin S in West Africa, and a Dogon population
from Mali has now been studied (5). Substantial protection against severe cerebral
malaria was documented with an odds ratio of 0.14, suggesting that the level of
protection afforded by hemoglobin C may be very substantial.

Lack of the Duffy blood group on red blood cells, manifest as the FY (a-b-)
phenotype, is associated with complete protection against Plasmodium vivax
malaria (112). This chemokine receptor gene that encodes the Duffy antigen has a
point mutation in its promoter, which prevents erythroid expression (158), and this
FY*A null allele is present at frequencies of almost 100% in most sub-Saharan
African populations but is rare or absent in Caucasians. Zimmerman et al. (178)
have now identified a FY*A null allele at low frequencies in Papua New Guinea
and present preliminary evidence that the rate of P. vivax infection may be lower
in heterozygotes for this variant.

The inability to secrete blood groups’ substances into saliva and at other mucosal
surfaces was one of the earliest human genetic markers studied and is determined
by null alleles of the fucosyltransferase-2 gene (79). Nonsecretors make up 15 %-—
25% of major population groups and may be at increased risk of bacterial urinary
tract infections. A study of Senegalese commercial sex workers has found that
nonsecretors were at lower risk of HIV-1 infection (8), supporting a previous
study of a heterosexual HIV transmission (24).
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Prion Protein Gene

One of the strongest genetic associations described with an infectious disease is
for the prion protein gene (PRNP). About 50% of Caucasians are heterozygous
for methionine and valine at position 129 of this gene, and these individuals are
strongly protected against sporadic Creutzfeld-Jacob disease (CJD) (124) and new-
variant CJD (176), which resulted from the bovine spongiform encephalopathy
epidemic. Methionine homozygotes are at greater risk of sporadic CJD than valine
homozygotes (171), and these two genotypes are associated with subtly different
clinicopathologic phenotypes (83). Recently, it has been possible to genotype
kuru cases and matched controls from the Fore tribe of the New Guinea highlands
where the original epidemic of this transmissible spongiform encephalopathy was
described. Methionine homozygotes show the highest risk of disease and manifest
a shorter incubation period than other genotypes, raising the possibility that more
heterozygotes will be identified in the current British new variant CJD epidemic
as time progresses (87).

CONCLUDING REMARKS

There has been a clear upturn in the amount of activity in this field in recent
years, driven by the greater ease of genotyping and new analytical approaches.
Larger and more realistic sample sizes are becoming common because of tech-
nical improvements. Although, as ever, there are apparently inconsistent reports
from different laboratories, usually studying very different populations, some im-
portant areas of consensus are clear. There are some clear and repeatable genetic
associations with particular diseases. The existence of HLA associations with sev-
eral infectious diseases now appears beyond dispute, particularly with leprosy,
tuberculosis, persistent hepatitis, HIV and HTLV-1, and malaria. Evidence for
the importance of heterozygote advantage in maintaining HLA polymorphism is
growing. The associations of variation in the chemokine receptor genes, CCR5
and CCR2, and altered rate of HIV disease progression are now very well sup-
ported, but evidence of chemokine associations is more preliminary. Several other
loci are credibly associated with malaria, tuberculosis, and pneumococcal disease
manifestations. But the great majority of these associations to date are of modest
effect.

The exceptions are worth noting. Hemoglobin S and possibly hemoglobin C
provide a very substantial reduction in risk of severe malaria in the heterozygous
state. The absence of the Duffy blood group on red blood cells is associated
with complete resistance to vivax malaria. Homozygosity for the CCR5 32-bp
deletion is very substantially protective against HIV infection, and heterozygotes
at position 129 of the prion protein gene hardly ever develop Creutzfeld-Jacob
disease. Interestingly, these strong associations are all disease specific, whereas the
many immunogenetic loci that have smaller more modulatory effects (e.g., HLA,
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VDR, CD32) are often associated with multiple infectious diseases. All four of
these loci were identified as candidate genes, but increasing use of genome-wide
linkage analysis of multicase families suggests that new major susceptibility loci
should soon emerge from this approach. Although this is clearly a more demanding
approach than candidate gene analysis, progress, so far, with linkage studies of
several infectious diseases has been encouraging.

In the near future, two new approaches will become of increasing importance.
The first will be the rise of detailed linkage disequilibrium mapping, resulting from
the availability of huge numbers of new SNPs in all areas of the genome. This will
initially allow much more precise mapping of known associations and linkages
and eventually lead to genome-wide association studies. The potential of the latter
has been extensively discussed in the field of complex disease in general, and the
apparently highly polygenic nature of common infectious disease suggests that
this approach may be particularly fruitful in this arena. The other approach that is
already attracting more interest, that of combined host-parasite genetic analysis,
is also fuelled by genomic information. Viral genome sequences have been avail-
able for some years, bacterial genomes, such as that of M. ruberculosis and the
meningococcus, are newly available, and those of larger parasites, such as P. falci-
parum, will be available in the near future. In diseases where it is readily possible
to sample the genomes of both host and pathogen simulataneously, such as for HIV,
malaria, and many other infections, this should lead to new combined analytical
approaches that may reveal much about the nature of evolutionary driving forces
for host and parasite genetic diversity.

Visit the Annual Reviews home page at www.AnnualReviews.org
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