NERVOUS SYSTEM TOXICOLOGY

OUTLINE

• Nervous system development
• Nervous system anatomy and physiology
• Manifestations of neurotoxicity
 – Neuronopathies
 – Axonopathies
 – Myelinopathies
 – Neurotransmission-associated anomalies
• Prototypical toxicological agents
 – Methylmercury
 – Carbon disulfide
 – Lead
 – Nicotine
 – Organochlorine insecticides
 – Organophosphorous insecticides
 – Venoms
NERVOUS SYSTEM ANATOMY

BLOOD BRAIN BARRIER

MANIFESTATIONS OF NEUROTOXICITY

• Neuronopathies
• Axonopathies
• Myelinopathies
• Neurotransmission-associated anomalies
MANIFESTATIONS OF NEUROTOXICITY

NEUROPATHIES
- Injury or death to neurons
- Irreversible loss
- Initial injury followed by apoptosis or necrosis
- Caused by CO, ethanol, carbon tetrachloride, methyl mercury, lead

NEURONOPATHIES
- Primary site of toxicity is axon
- Degeneration of axon, surrounding myelin, but cell body remains intact
- Irreversible in CNS, but reversible in PNS
- Caused by CS₂, acrylamide, gold, organophosphorous esters

AXONOPATHIES
- Intramyelinic edema
- Demyelination
- Remyelination in CNS occurs to a limited extent
- Remyelination in PNS done by Schwann cells
- Caused by amiodarone, disulfiram, Pb

MYELINOPATHIES
- Interruption of impulse transmission
- Blockade of transsynaptic communication
- Inhibition of neurotransmitter uptake
- Interference with second-messenger systems
- Caused by nicotine, amphetamines, cocaine

NEUROTRANSMISSION-ASSOCIATED ANOMALIES
- Interruption of impulse transmission
- Blockade of transsynaptic communication
- Inhibition of neurotransmitter uptake
- Interference with second-messenger systems
- Caused by nicotine, amphetamines, cocaine
MERCURY

- Vapor from degassing in earth's crust
- Methylated by microorganisms to CH$_3$Hg
 - CH$_3$Hg is most significant form of Hg in terms of toxicity from environmental exposure
 - Bioconcentration in aquatic food chain
 - 90 to 95% absorption in GIT
 - Crosses placenta

METHYL MERCURY

- Neurotoxic effects lead to,
 - Paresthesia
 - Ataxia
 - Neurasthenia
 - Vision and hearing loss
 - Coma and death
- Neurotoxic effects due to focal necrosis of neurons

MERCURY

- The critical or lowest level of observed adverse health effect in adults is paresthesia
- The average long-term intake associated with paresthesia calculated to be 300 µg/day for an adult
- Poisoning therapy utilizes chelators such as cysteine, penicillamine, thiol resins

METHYL MERCURY

- Used in the production of viscose rayon, cellophane, pesticides, as a solubilizer for waxes and oils
- Exposure is predominantly occupational
- OSHA has established a PEL of 20 ppm as an 8-h TWA

CARBON DISULFIDE

- Direct interaction with free amine and sulfhydryl groups
- Microsomal activation to reactive sulfur intermediates that bind macromolecules
- Produce neuronal degeneration in CNS; in PNS produce myelin swelling and fragmentation
LEAD

- Ubiquitous toxic metal
- Primary route of exposure is by ingestion
- Source is from lead-based paint, contaminated drinking water, lead-glazed pottery
- Encephalopathy occurs at blood lead levels of 80-100 µg/dL

LEAD

- Symptoms of encephalopathy include lethargy, vomiting, irritability, loss of appetite, and dizziness
 - Progression of symptoms lead to ataxia, reduced level of consciousness, which may progress to coma and death
 - Recovery is often associated with life-long epilepsy, mental retardation, optic neuropathy, blindness

LEAD

- Chronic toxicity affects PNS; Schwann cell degeneration
- Mechanisms of toxicity include,
 - Impairment of cell-cell connections
 - Alterations in neurotransmitter levels
 - Disrupts calcium metabolism

NICOTINE

- Exposure from smoking
- Binds to nicotinic cholinergic receptors
 - Increase in HR
 - Elevated BP
- Acute overdose leads to excessive stimulation of nicotinic receptors leading to ganglionic paralysis

ORGANOCHLORINE INSECTICIDES

- DDT, lindane, dieldrin
- High lipid solubility, low degradation rate
- Persistence in environment, bioconcentration and biomagnification in food chains
- Produce disturbances in ion transport across axon leading to increased excitability and seizures

ORGANOPHOSPHOROUS PESTICIDES

- Malathion, parathion, “nerve gases”
- Inhibits acetylcholinesterase (AChE) leading to continuous stimulation
- Neurobehavioral, cognitive, neuromuscular disturbances
- Intermediate syndrome
- Death from respiratory distress
VENOMS
ARACHNIDA

• Scorpions, spiders
• Contain low molecular weight proteins that affect ion transport along axon
 – Impairs action potential
• Symptoms include tachycardia, respiratory distress