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SUMMARY

Randomized trials in which the unit of randomization is a community, worksite, school or family are
becoming widely used in the evaluation of life-style interventions for the prevention of disease. The
increasing interest in adopting a cluster randomization design is being matched by rapid methodological
developments. In this paper we describe several of these developments. Brief mention is also made
of issues related to economic analysis and to the planning and conduct of meta-analyses for cluster
randomization trials. Recommendations for reporting are also discussed. Copyright ? 2001 John Wiley
& Sons, Ltd.

1. INTRODUCTION

Randomized trials in which the unit of randomization is a community, worksite, school or
family are becoming increasingly common for the evaluation of life-style interventions for
the prevention of disease. Reasons for adopting cluster randomization are diverse, but include
administrative convenience, a desire to reduce the e<ect of treatment contamination and the
need to avoid ethical issues which might otherwise arise.
Dependencies among cluster members typical of such designs must be considered when de-

termining sample size and in the subsequent data analyses. Failure to adjust standard statistical
methods for within-cluster dependencies will result in underpowered studies with spuriously
elevated type I errors.
These statistical features of cluster randomization were not brought to wide attention in the

health research community until the now famous article by Corn@eld [1]. However, the 1980s
saw a dramatic increase in the development of methods for analysing correlated outcome data
(for example, Ashby et al. [2]) in general and methods for the design and analysis of cluster
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randomized trials in particular (for example, Donner et al. and Gillum et al. [3; 4]). Books
summarizing this research have also recently appeared [5; 6] and new statistical methods are
in constant development. There is also growing evidence that there is a shorter lag time
between the development of new methodology and its appearance in medical journals [7].
In this paper we consider several new methodological developments likely to be of particular

importance to the design and analysis of cluster randomization trials. Some of the ethical
challenges posed by cluster randomization are described in Section 2 while new developments
in sample size estimation and data analysis are described in Sections 3 and 4, respectively.
Sections 5 and 6 of the paper consider issues in economic analysis and in the meta-analysis
of cluster randomization trials, while guidelines for trial reporting are reviewed in Section 7.
The last section also summarizes many of the key issues raised in the paper.

2. ETHICAL ISSUES IN CLUSTER RANDOMIZATION

According to the World Medical Association Declaration of Helsinki [8], consent must be
obtained from each patient prior to random assignment. The situation is more complicated for
cluster randomization trials, particularly when larger units such as schools, communities or
worksites are randomized. In that case school principals, community leaders or other decision
makers will usually provide permission for both the random assignment and implementation
of the intervention. Individual study subjects must still be free to withhold their participation,
although even then they may not be able to completely avoid the inherent risks imposed by
an intervention that is applied on a cluster-wide level.
The relative absence of ethical guidelines for cluster randomized trials [9; 10] appears to

have created a research environment in which the choice of randomization unit may de-
termine whether or not informed consent is deemed necessary prior to random assignment.
This phenomenon can be seen, for example, in the several published trials of vitamin A
supplementation on childhood mortality. Informed consent was obtained from mothers prior
to assigning children to either vitamin A or placebo in the household randomization trial
reported by Herrera et al. [11]. This was not the case in the community intervention trial
of vitamin A reported by the Ghana VAST Study Team [12], where consent to participate
was likely obtained from children’s parents only after random assignment of clusters to one
of two intervention groups. In this trial clusters were de@ned to be geographic areas which
included approximately 51 family compounds each. It seems questionable, on both an ethical
and methodological level, whether the unit of randomization should play such a critical role
in deciding whether or not informed consent is required prior to randomization.
Further debate is needed in order for the research community to be able to develop reason-

ably uniform standards regarding guidelines for informed consent. We encourage investigators
to report the methods used to obtain informed consent in their own trials as a @rst step towards
engaging this debate.

3. RECENT DEVELOPMENTS IN SAMPLE SIZE ESTIMATION

We consider a cluster randomization trial in which the primary aim is to compare two groups
with respect to their mean values on a normally distributed response variable Y having a
common but unknown variance �2. Suppose k clusters of m individuals are assigned to each
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of an experimental group and a control group. Estimates of the population means �1 and
�2 are given by the usual sample means MY1 and MY2 for the experimental and control groups,
respectively. From a well-known result in cluster sampling (for example, Kish, reference [13],
Chapter 5), the variance of each of these means is given by

var( MYi)=
�2

km
[1 + (m− 1)	]; i=1; 2 (1)

where 	 is the intracluster correlation coePcient measuring the degree of similarity among
responses within a cluster. If �2 is replaced by P(1− P), where P denotes the probability of
a success, equation (1) also provides an expression for the variance of a sample proportion
under clustering. For sample size determination equation (1) implies that the usual estimate
of the required number of individuals in each group should be multiplied by the variance
inQation factor or design e<ect IF=1 + (m − 1)	 to provide the same statistical power as
would be obtained by randomizing km individuals to each group when there is no clustering
e<ect.
The expression for IF shows that the prior assessment of 	 has a unique role to play in

estimating sample size for cluster randomization trials. DiPculties in obtaining accurate esti-
mates of intracluster correlation are complicated in practice by the relatively small number of
publications which present these values when reporting trial results (see, for example, Donner
and Klar, reference [5], Table 5.1). However several new strategies have been suggested to
improve sample size planning. For example, Spiegelhalter [14] suggests using Bayesian meth-
ods which explicitly allow the use of prior opinion in trial design. An alternative approach is
to recalculate sample size using an internal pilot study, as has been suggested by Shih [15]
in the context of a periodontal study in which clusters are composed of multiple sites in a
subject’s mouth. However, this approach can only be used when clusters are recruited over
time and follow-up time is short enough that outcome data may be used in a reasonably timely
fashion to update the estimate of 	. Existing research as applied to clinical trials involving
individual randomization demonstrates that sample size re-estimation has little e<ect on type I
error rates for trials which are suPciently large [16]. It is unclear what e<ect, if any, sample
size re-estimation has on type I error rates for cluster randomization trials.

4. RECENT DEVELOPMENTS IN DATA ANALYSIS

4.1. Population-averaged versus cluster-speci.c models

A diPcult issue in the analysis of categorical, count and time to event outcome data involves
the decision to select either a ‘population-averaged’ model or a ‘cluster-speci@c’ model. Con-
sider, for example, models for the analysis of correlated binary outcome data. The gener-
alized estimating equations (GEE) extension of logistic regression may be characterized as
population-averaged in the sense that it measures the expected (marginal) change in a re-
sponse as the value of the covariate increases by one unit. This is in contrast to approaches
based on a logistic-normal model, which may be characterized as cluster speci@c. The latter
models are constructed so as to measure the expected change in response within a cluster as
the value of a covariate increases by one unit, that is, they provide conditional measures of
covariate e<ects.
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Although both approaches estimate the same population parameters when the outcome vari-
able is normally distributed, this equivalence disappears in the case of a binary outcome
variable, in which case

�PA ≈�CS(1− 	0)
where �PA and �CS are the regression coePcients from a population-averaged and cluster-
speci@c extension of logistic regression, respectively, while 	0 is the intracluster correlation
coePcient at �PA =�CS =0. As pointed out by Neuhaus [17], interpretation of estimated co-
variate e<ects obtained from cluster-speci@c models may be diPcult when the covariate is
de@ned at the cluster level. This problem arises in the interpretation of results from cluster
randomization trials when the covariate of main interest is the intervention e<ect, since sub-
jects in any one cluster will invariably share the same intervention group. Thus interpretation
of the intervention e<ect using a cluster-speci@c model must formally rely on the notion of a
subject within a given cluster changing his or her intervention status, clearly a non-observable
event. This diPculty has led Neuhaus [17] to remark that cluster-speci@c models would seem
to be most suitable for testing the e<ect of covariates that vary within clusters (for exam-
ple, subject age or gender), while population-averaged models such as GEE are conceptually
preferable for estimating the e<ect of cluster-level covariates such as intervention status. How-
ever it must also be noted that the di<erences between the two approaches disappear as the
intracluster correlation coePcient approaches zero, and that more empirical work is needed to
compare the advantages and disadvantages of the two approaches in practice. As pointed out
by Omar and Thompson [18], one advantage of the cluster-speci@c approach is that it provides
direct estimates of variance components, quantities which are treated as nuisance parameters
when the population-averaged approach is adopted. Further mathematical details concerning
the distinction between cluster-speci@c and population-averaged models are provided in the
Appendix.
The correct speci@cation of random e<ects at two or more levels may have implications

for the validity and precision of statistical inferences [19], thus the choice of approach should
ultimately depend on the covariate e<ects and other parameters that are of most interest. These
issues have been debated recently by Heagerty and Zeger [20], who describe a model which
can be used to obtain either marginal or conditional measures of covariate e<ects but which
also provides direct estimates of variance components. Further work is needed to evaluate this
model in the context of cluster randomization trials.

4.2. Methods for analysing trials involving a small number of clusters

Many cluster randomization trials, particularly those that randomize communities, involve a
small number of large clusters. However, the validity of statistical inferences constructed using
multiple regression models (for example, generalized estimation equations approach, logistic-
normal) require a large number of clusters. Suppose that only a small number of clusters are
enrolled in a trial. Then, for example, robust hypothesis tests will tend to be overly liberal
when constructed using the GEE extension of linear regression for the analysis of correlated
Gaussian data [21]. Furthermore statistical inferences constructed using mixed e<ects linear
regression models must be based on approximate t- or F-distributions for which there is no
universally accepted method for approximating the degrees of freedom [22], at least in the
case of an unbalanced design. A somewhat ad hoc use of the F-distribution was proposed by

Copyright ? 2001 John Wiley & Sons, Ltd. Statist. Med. 2001; 20:3729–3740



CURRENT AND FUTURE CHALLENGES IN CLUSTER RANDOMIZATION 3733

Mancl and DeRouen [23], in their simulation study examining the performance of the GEE
extension of logistic regression. Mancl and DeRouen [23] reduced the overly liberal rejection
rates of robust hypothesis test using this procedure while also incorporating a bias correction
for the robust variance estimator.
These diPculties may be avoided using cluster-level statistical inferences based on the ran-

domization distribution used in designing the trial. For example, Gail et al. [24], describe how
exact hypothesis tests and exact con@dence intervals were used to construct statistical infer-
ences for COMMIT, a pair-matched community intervention trial which assessed a smoking
cessation intervention [25]. Note that such analyses give equal weight to all clusters, ignoring
the variation in cluster size.
These problems suggest that additional research is required on the development of method-

ology for trials enrolling only a small number of clusters. Of course, more careful attention
to trial power will help to reduce these challenges in practice.

4.3. Analytic issues involving matched-pair designs

An important design feature of the COMMIT trial is that the 22 participating communities
were pair-matched prior to random assignment. Pairs of communities were matched on the
basis of population size, population density, demographic pro@le, community structure and
geographical proximity. The matching variables were selected, at least in part, on the basis of
their known correlation with smoking cessation rates. The main advantage of this design is its
potential to provide very tight and explicit balancing of important prognostic factors, thereby
improving the power for detecting the e<ect of intervention. Donner and Klar (reference [5],
Table 3:2) use data from seven pair-matched trials to show that it has been quite diPcult
in practice to identify matching variables which will substantially improve power. This was
true also of the COMMIT trial which was only able to achieve a modest gain in ePciency
as compared to a trial using a completely randomized design.
However even when it is possible to create comparable pairs of clusters, there are some

less recognized analytic limitations associated with the matched-pair design. These limitations
arise because of the inherent feature of this design that there is exactly one cluster assigned
to each combination of intervention and stratum. As a result, the natural variation in response
between clusters in a matched pair is totally confounded with the e<ect of intervention.
Estimates of the variance for the observed e<ect of intervention must therefore be constructed
using between stratum information [26]. A resulting consequence is that standard models
for correlated binary outcome data are not directly applicable. Several newer methods might
prove useful but need to be evaluated before they can be recommended for analyses of data
from pair-matched cluster randomization trials. For example, Liang and Pulver [27] describe an
adaptation of the generalized estimating equations extension of logistic regression for analyses
of genetic data from pair-matched families. New binary outcomes are created by combining
all possible pairs of individuals from control and experimental clusters within a stratum into
new ‘pseudo’ clusters. Application of robust variance estimators are then based on between-
stratum information. An alternative procedure based on mixed e<ects logistic regression was
adopted by Sorensen et al. [28] and outlined by Thompson et al. [29]. Variance estimators
for these models are constructed using a random e<ect obtained from the interaction between
stratum and intervention.
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4.4. Overlapping cluster membership

Quit rates of heavy smokers enrolled in the COMMIT trial during 1988 were assessed in
1993. A potential problem arising in trials having such a relatively long follow-up time is
the increased possibility that cluster membership may change. This may particularly be a
problem in school-based trials since children could enrol in di<erent schools in successive
years. However very little attention has been given to statistical models which may be used
when subjects can enrol in more than one cluster over time. Some discussion of models
which include such non-nested sources of clustering is given by Raudenbush [30] for Gaussian
outcome data and by Betensky et al. [31] for binary outcome data. Further work is needed to
evaluate the usefulness of these models for cluster randomization trials. The e<ect on statistical
inferences of making the typical but possibly incorrect assumption that all subjects maintain
membership in the same cluster is as yet unclear.

4.5. Issues arising from missing data, protocol violations and outliers

Considerable attention has been given recently to methods of accounting for missing data, pa-
tient non-compliance, and the e<ect of outliers in trials randomizing independent individuals.
Extensions to multilevel data in general [32; 33] and to cluster randomization trials in partic-
ular are also beginning to appear [24; 29; 34–36]. For example, an application of imputation
methods is provided by the COMMIT investigators [24; 25]. Since analyses were conducted
at the cluster level using permutation tests it was not necessary in this case to correct variance
estimates for imputation. An alternative approach based on a strategy of multiple imputation
was used by Gomel et al. [35] in their anlaysis of data from an Australian worksite inter-
vention trial. There has been some recent work examining the properties of these di<erent
procedures. For instance, Hunsberger et al. [36] report on the results of a simulation study
in the context of a school-based obesity prevention programme demonstrating that multiple
imputation can perform adequately even when the missingness is related to intervention group
and study outcome.

5. ISSUES IN THE ECONOMIC ANALYSIS OF CLUSTER
RANDOMIZATION TRIALS

Decisions regarding implementation of a new therapeutic intervention are increasingly depen-
dent on the demonstration of its cost-e<ectiveness as well as its ePcacy. Economic analyses
may be carried out by including measures of costs along with other outcomes as part of a
randomized trial. A common criticism of such a strategy is that the costs of doing research
may be measured in place of the costs of providing an intervention, a problem primarily of
external validity (Drummond et al. reference [37], Section 8:2). This criticism may have less
force, however, for cluster randomization trials. Consider, for example, an antenatal care trial
sponsored by the World Health Organization which compared the ‘best standard treatment’
o<ered to women attending antenatal care clinics to an experimental intervention consisting
only of tests, clinical activities and follow-up actions scienti@cally demonstrated to be e<ec-
tive in improving outcomes [38]. A secondary goal of this trial was to conduct an economic
analysis comparing costs and cost-e<ectiveness of the experimental intervention to that of the
control intervention. Since antenatal care clinics are the unit of randomization, all women
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from a clinic will receive a single intervention. Thus, as noted by Mugford et al. [39], an
‘advantage of the cluster design for the economic evaluation is that the unit of randomization
is also a key unit of health management and cost generation’.
Economic analyses have traditionally been conducted using descriptive comparisons of cost

outcomes. Any uncertainty in costs may then by explored using sensitivity analyses [37].
This approach was taken, for example, by Aikins et al. [40] in their economic analysis
of data from a pair-matched community intervention trial assessing the e<ect of insecticide
impregnated bednets on preventing morbidity and mortality from malaria. Uncertainty in the
costs of insecticide, in patient treatment and of numbers of cases seeking treatment were
varied as part of a multi-way sensitivity analysis.
Drummond et al. [37] argue that it is often useful to supplement such sensitivity analyses

with standard statistical inferences comparing costs across intervention groups. Standard pro-
cedures for the analysis of correlated quantitative outcomes are applicable when comparing
costs across intervention groups. For example, analyses of cost data from trials in which a
large number of clusters are enrolled may proceed using mixed e<ects linear regression models
allowing for random variation in costs among clusters. The typically skewed distribution of
cost data may be accounted for here using robust variance estimators in place of model-based
inferences.
Analyses may prove more complicated when attempts are made to evaluate cost-e<ective-

ness, which is typically measured as the ratio of the di<erence in costs across intervention
groups divided by the estimated clinically relevant e<ect of intervention [37]. Power and
sample size calculations for the cost-e<ectiveness ratio have been described by Briggs and
Gray [41] in the context of therapeutic trials for which individual patients are the unit of
randomization, while approaches to statistical analysis have been described by Drummond
et al. [37]. Their extension to cluster randomized trials is as yet unexplored.

6. ISSUES IN THE META-ANALYSIS OF CLUSTER RANDOMIZATION TRIALS

Meta-analyses involving the synthesis of evidence from cluster randomization trials raise
methodologic issues beyond those raised by meta-analyses which include only individually
randomized trials. Two of the more challenging methodological issues are (i) the increased
possibility of study heterogeneity, and (ii) diPculties in estimating design e<ects and selecting
an optimal method of analysis [42].
These challenges are illustrated by the meta-analysis reported by Fawzi et al. [43] who

investigated the e<ect of vitamin A supplementation on child mortality. This investigation
considered trials of hospitalized children with measles as well as community-based trials of
healthy children. Individual children were assigned to intervention in the four hospital-based
trials, while allocation was by geographic area, village, or household in the eight community-
based trials. One of the community-based trials included only one geographic area per inter-
vention group, each of which enrolled approximately 3000 children. On the other hand there
was an average of about two children from each cluster when allocation was by household.
Thus an important source of heterogeneity arose from the nature and size of the randomization
units used in the di<erent trials. This problem was dealt with by performing the meta-analysis
separately for the individually randomized and cluster randomized trials.
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It is straightforward to summarize results across trials when each study provides a common
measure for the estimated e<ect of intervention (such as an odds ratio, for example) and a
corresponding variance estimate which appropriately accounts for the clustering. Unfortunately
the information necessary for its application in practice is rarely available to meta-analysts.
One consequence of this diPculty is that investigators are sometimes forced to adopt ad

hoc strategies when relying on published trial reports which fail to provide estimates of the
design e<ect. For example, only four of the eight community-based trials considered by Fawzi
et al. [43] reported that they accounted for clustering e<ects. Consequently Fawzi et al. [43]
decided to increase the variance of summary odds ratio estimates by an arbitrary 30 per cent.
The authors argued that this adjustment seems reasonable since the design e<ects ranged from
1.10 to 1.40 in those studies which did adjust for clustering e<ects.
A few investigators have designed community intervention trials in which exactly one

cluster has been assigned to the intervention group and one to the control group, either with
or without the bene@t of random assignment. This was the case, as noted above, with at
least one of the community-based trials included in the meta-analysis reported by Fawzi [43].
Such trials invariably result in interpretational diPculties arising from the total confounding
of the variation in response due to the e<ect of intervention and the natural variation that
exists between communities even in the absence of an intervention e<ect. External estimates
of design e<ects must be used if such trials are to be included in a meta-analysis. It would
therefore be prudent to conduct a sensitivity analysis in which these trials are excluded in
order to assess their inQuence on the conclusions.
Even when each trial provides an estimate of the design e<ect, several di<erent approaches

could be used for conducting a meta-analysis. For example, a procedure commonly adopted for
combining the results of individually randomized clinical trials with a binary outcome variable
is the well known Mantel–Haenszel test. The adjusted Mantel–Haenszel test [44] may be used
to combine results of cluster randomized trials. Donner et al. [42] review this procedure and a
number of other approaches, assuming that each of the combined trials involves a completely
randomized design with a binary outcome variable. Simulation studies are needed to evaluate
these di<erent analytic approaches.

7. RECOMMENDATIONS FOR TRIAL REPORTING

Reporting standards for randomized clinical trials have now been widely disseminated (for
example, Moher et al. [45]). Many of the principles that apply to trials randomizing individuals
also apply to trials randomizing intact clusters. These include a carefully posed justi@cation
for the trial, a clear statement of the study objectives, a detailed description of the planned
intervention and the method of randomization and an accurate accounting of all subjects
randomized to the trial. Unambiguous inclusion–exclusion criteria must also be formulated,
although perhaps separately for cluster-level and individual-level characteristics. There are,
however, some unique aspects of cluster randomization trials that require special attention at
the reporting stage. We focus here on some of the most important of these. More complete
accounts are provided by Donner and Klar (reference [5], Chapter 9) and Elbourne and
Campbell [46].
The decreased statistical ePciency of cluster randomization relative to individual random-

ization can be substantial, depending on the sizes of the clusters randomized and the degree of
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intracluster correlation. Thus, unless there is obviously no alternative, the reasons for random-
izing clusters rather than individuals should be clearly stated. This information, accompanied
by a clear description of the units randomized, can help a reader decide if the loss of precision
due to cluster randomization is in fact justi@ed. Torgerson [47] argues that this is often not
the case in practice.
Having decided to randomize clusters, investigators may still have considerable latitude

in their choice of allocation unit. As di<erent levels of statistical ePciency are associ-
ated with di<erent cluster sizes, it would seem important to select the unit of randomiza-
tion on a carefully considered basis. An unambiguous de@nition of the unit of randomiza-
tion is also required. For example, a statement that ‘neighbourhoods’ were randomized is
clearly incomplete without a detailed description of this term in the context of the planned
trial.
As noted previously, the consensus that exists in most clinical trial settings regarding the role

of informed consent has not tended to apply to cluster randomization trials. By reporting the
methods used (if any) to obtain informed consent in their own trials, it may gradually become
possible for the research community to develop reasonably uniform standards regarding this
important issue.
The clusters that participate in a trial, simply owing to their consent to be randomized,

may not be representative of the target population of clusters. Some indication of this lack
of representativeness may be obtained by listing the number of clusters that meet the eligi-
bility criteria for the trial, but which decline to participate, along with a description of their
characteristics.
A continuing diPculty with reports of cluster randomization trials is that justi@cation

for the sample size is all too often omitted. Investigators should clearly describe how the
sample size for their trial was determined, with particular attention given to how clus-
tering e<ects were adjusted for. This description should be in the context of the
experimental design selected (for example, completely randomized, matched-pair,
strati@ed).
It would also be bene@cial to the research community if empirical estimates of 	 were rou-

tinely published, with an indication of whether or not the reported values have been adjusted
for the e<ect of baseline covariates.
It should be further speci@ed what provisions were made in the sample size calculations to

account for potential loss of follow-up. Since the forces leading to the loss of follow-up of
individual members of a cluster may be very di<erent from those leading to the loss of an
entire cluster, both types of attrition must be considered here.
A large variety of methods, based on very di<erent sets of assumptions, have been used

to analyse data arising from cluster randomization trials. For example, possible choices for
the analysis of binary outcomes include adjusted chi-square statistics, the method of gen-
eralized estimating equations (GEE) and logistic-normal regression models. These methods
are not as familiar as the standard procedures used to analyse clinical trial data, partly be-
cause methodology for analysing cluster randomization trials is in a state of rapid devel-
opment, with virtually no standardization and a proliferation of associated software. There-
fore it is incumbent on authors to provide a clear statement of the statistical methods used,
accompanied, where it is not obvious, by an explanation of how the analysis adjusts for
the e<ect of clustering. The software used to implement these analyses should also be
reported.
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APPENDIX

Consider a trial in which clusters are assigned to either an experimental or a control group
using a completely randomized design. Suppose also that Yijs denotes a binary outcome variable
for the sth subject, s=1; : : : ; mij , from the jth cluster, j=1; : : : ; ki, and ith intervention group,
i=1; 2.
Then the e<ect of intervention may be assessed using a generalized estimating equations

extension of logistic regression given by

log[Pijs=(1− Pijs)]= �0 + �PAXij
where

Pijs =Pr(Yijs=1 |Xij)
Xij =

{
1 if i=1 (experimental)
0 if i=2 (control)

The population-averaged odds ratio for the e<ect of intervention is given by exp(�PA).
The e<ect of intervention may also be assessed using a logistic-normal model given by

log[Pijs=(1− Pijs)]=�0 + �CSXij + �ij
where

Pijs =Pr(Yijs=1 | �ij ; Xij)
�ij ∼ N(0; �2)

and assuming that the random e<ects, �ij ; i=1; 2; j=1; : : : ; ki, are independent. The cluster-
speci@c odds ratio for the e<ect of intervention is given by exp(�CS).
The covariate Xij denoting the intervention assignment is de@ned at the cluster level. These

models may include covariates de@ned at either the cluster level or at the individual level. For
example, Donner and Klar [5] use the generalized estimating equations extension of logistic
regression to analyse data from a school-based smoking prevention trial. Baseline measures
of student gender and age were included in the model to account for chance imbalance across
intervention groups with respect to these variables. The resulting population-averaged model
is given by

log[Pijs=(1− Pijs)]= �0 + �1Xij + �2Ageijs + �3Sexijs
where

Pijs =Pr(Yijs=1 |Xij ;Ageijs;Sexijs)
Sexijs =

{
1 if i=1 if male
0 if i=2 if female

and Ageijs denotes age in years.
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