1. Toss a coin three times. Let X be the number of heads in the first toss and let Y be the number of heads in the first three tosses.

 (a) Find $p(x, y) = P(X = x, Y = y)$ the joint p.m.f. of (X, Y)

 (b) Find the marginal probability distributions $p_X(x) = P(X = x)$ and $p_Y(y) = P(Y = y)$.

 (c) Find the conditional probability that $Y = 2$ given that $X = 0$.

 (d) Repeat (c) when $X = 1$.

 (e) Find $E[Y - X]$.

 (f) Find $\text{Cov}(X, Y)$.

2. Let $\Omega = \{ (\omega_1, \omega_2) : \omega_1^2 + \omega_2^2 \leq 1 \}$. Geometrically Ω is the unit circle (including its interior) in 2-dimensions. Let $A \subset \Omega$ let $a(A)$ denote its area. Clearly $a(\Omega) = \pi$. It is natural to define a probability measure that assigns

 $$P(A) = \frac{a(A)}{a(\Omega)} = \frac{a(A)}{\pi}$$

 to subsets $A \subset \Omega$ for which $a(A)$ is well defined. This measure conveys the idea of a uniform distribution over the unit circle. Given $\omega = (\omega_1, \omega_2) \in \Omega$, let $X(\omega) = \omega_1$ and $Y(\omega) = \omega_2$. It is not difficult to see that (X, Y) has joint density function

 $$f(x, y) = \frac{1}{\pi} \{ (x, y) : x^2 + y^2 \leq 1 \}.$$

 (a) Find the marginal density functions $f_X(x)$ and $f_Y(y)$.

 (c) Find the conditional density function of X given Y for values of $Y \in (-1, 1)$.

 (d) Find $E[3X + 2Y]$.

 (e) Find $\text{Cov}(X, Y)$.

3. Let X_1, X_2, \ldots, X_n be independent random variables with mean μ and variance σ^2 and let $S_n = X_1 + X_2 + \ldots + X_n$.

 (a) Find $E[S_n]$.

 (b) Find $\text{Var}[S_n]$.

 (c) Let $\bar{X}_n = \frac{S_n}{n}$. Find $E[\bar{X}_n]$ and $\text{Var}[\bar{X}_n]$.

 (d) Use Chebyshev’s inequality to bound $P(|\bar{X}_n - \mu| \geq c)$. Hint: Write $c = k\sqrt{\text{Var}[X_n]}$.

 What happens as n increases?

 (e) Let $Z_n = \frac{S_n - n\mu}{\sqrt{n}\sigma}$. Find $E[Z_n]$ and $\text{Var}[Z_n]$.