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I, myself, alone, have more memories than all mankind since the world began. 
(fictional character Ireneo Funes in Jorge Luis Borges’ story “Funes, His Memory”) 

 
 

The Liability View of Cognitive Limitations 
 
Some of us ordinary mortals achieve extraordinary intellectual feats.  For instance, the 

ancient king Mithridates the Great (king of Pontus, a long and narrow strip of land on the 
southern coast of the Black Sea) is said to have learnt 22 languages, and to have been able in the 
days of his greatest power to transact business with the deputies of every tribe subject to his rule 
in their own peculiar dialect.  Napoleon is known to have dictated 102 letters to successive teams 
of perspiring secretaries almost without pause, as he prepared the final details for the launching of 
his devastating campaign against Prussia (Chandler, 1997).  One of the most celebrated physicists 
of our time is Richard Feynman who won the 1965 Nobel Prize in physics for his many 
contributions to his field, especially for his work on quantum electrodynamics.  Beyond being a 
brilliant thinker, on the bongos Feynman supposedly could play 10 beats with one hand against 
11 with the other (Feynman, 1999; try it—you may decide that quantum electrodynamics is 
easier.) 

Despite numerous examples of people with prodigious abilities that we might otherwise 
have thought impossible, much of cognitive psychology rests on the premise that human 
information processing capacity is rather severely bounded.  In the words of Kahneman, Slovic, 
and Tversky (1982), “cognitive psychology is concerned with internal processes, mental 
limitations, and the way in which the processes are shaped by the limitations” (p. xii).  According 
to Cowan (2001), “one of the central contributions of cognitive psychology has been to explore 
limitations in the human capacity to store and process information” (p. 2).  The list of 
documented limitations is long and includes the by now classic thesis that the capacity of short-
term memory is restricted to a limited number of chunks of information—“the magical number 
seven, plus or minus two” (Miller, 1956).  Similarly, the ability to pursue multiple intentional 
goals at any one time (e.g., driving a car, planning one’s day at work, and, simultaneously, 
listening to the latest scoop on the stock market) is thought to be restricted by a limited budget of 
strategic processing capacity (e.g., Shiffrin, 1988; Barsalou, 1992, chap. 4).1 

The premise that information-processing capacity is limited is usually accompanied by 
another ubiquitous assumption, namely, that these limitations pose a liability.  They constrain our 
cognitive potential, this assumption holds, barring us from performing feats such as quickly 
computing the square roots of large numbers in our heads or reciting by heart all the entries of the 
Manhattan telephone book.  Even more sinister, though, these cognitive limits are not only 
accused of hindering performance but are also suspected of being the culprit behind lapses of 
reasoning.  In fact, the link between cognitive limitations and reasoning errors can be found in 
such disparate research programs as Piaget’s theory of the cognitive development of children 
(e.g., Flavell, 1985), Johnson-Laird’s mental model theory (1983; Johnson-Laird, Legrenzi, 
Girotto, Legrenzi, & Caverni, 1999), and Kahneman and Tversky’s heuristics-and-biases program 
(e.g., Kahneman, Slovic, & Tversky, 1982). 

Piaget, for instance, suggested that the still-immature mind of the preoperational child 
commits lapses of reasoning such as egocentrism (i.e., the inability to take the perspective of 
another person) and animism (i.e., ascribing lifelike qualities to inanimate objects).  Only when 
cognitive development has reached its peak are children finally able to think in ways akin to those 
of scientists (e.g., reasoning in accordance with the rules of logic and probability theory).  The 
heuristics-and-biases program made a related point about the detriments of cognitive limits, but 
by challenging precisely the final stage of Piaget’s developmental trajectory.  In this research 
program’s view, reasoning abilities that reflect the laws of probability and logic are not part of the 
intuitive repertoire of the adult human mind (e.g., Slovic, Fischhoff & Lichtenstein, 1976).  



Instead, due to their limited cognitive capacities, adults need to rely on quick shortcuts, heuristics, 
when they reason about unknown or uncertain aspects of real-world environments.  But this use 
of heuristics leaves adult human reasoning prone to “severe and systematic errors” (Tversky & 
Kahneman, 1974, p. 1124), some of them akin to the lapses in reasoning that Piaget’s 
preoperational children suffered from (e.g., violation of class inclusion, see Hertwig, 2000). 

What inspires the close link often made between bounds in cognitive capacity and lapses of 
reasoning, even irrationality?  One speculative answer is that inferring this link naturally follows 
from a particular vision of rationality still embraced by many social scientists.  This vision 
defines rational judgment and decision making in terms of unbounded rationality (see Gigerenzer 
& Todd, 1999).  Unbounded rationality encompasses decision-making strategies that have little or 
no regard for humans’ cognitive limitations and so are unfettered by concerns about decision 
speed or processing complexity.  Theoretical frameworks such as subjective expected-utility 
maximization are often mathematically complex and computationally intractable, and thus they 
picture—implicitly or explicitly—the mind as if it were a supernatural being possessing unlimited 
powers of reason, boundless knowledge, and endless time.  Possibly it is here that the link 
between limitations and irrationality suggests itself to psychologists: Being mere mortals, humans 
do not possess supernatural mental powers.  Operating within the bounds of our cognitive 
limitations, we therefore must fall short of the norms defined by models of unbounded rationality. 

The goal of this chapter is to challenge this obligatory link between cognitive limitations 
and human irrationality.  While not doubting that limits can exact a price, we will question their 
exclusively negative status.  Specifically, we put forth the thesis that limitations in processing 
capacity, as well as in other resources such as knowledge, can actually enable rather than disable 
important adaptive functions (Thesis 1).  Secondly, we demonstrate that decision-making 
strategies that take limitations into account need not be less accurate than strategies with little or 
no regard for those limitations (Thesis 2).  That is, we will show that accurate decision making 
does not necessitate supernatural mental powers, and thus that cognitive limitations need not be 
equated with inferior performance.  Finally, we will challenge the assumption that simple 
decision-making strategies have evolved in response to the cognitive limitations of the human 
mind.  We suggest the reverse causality and submit the thesis that capacity constraints may in fact 
be a by-product of the evolution of simple strategies (Thesis 3). 

 
 

Thesis 1: Cognitive Limitations Can Enable Important Cognitive Functions 
 

Because human beings are not omniscient, limitations in our knowledge are a ubiquitous 
fact—we only differ with regard to the domains in which we are more or less knowledgeable.  In 
this sense, limited knowledge is an inevitable property of the database from which we derive 
inferences.  Limitations in our knowledge, however, can be beneficial.  We begin with an 
example of how limitations in knowledge can enable people to use a simple strategy to make 
surprisingly accurate inferences and predictions.  But it is not just the data on which we base our 
decisions that is often limited—the hardware that we use to process that data and reach our 
conclusions is bounded as well.  Hardware limitations—for instance, in terms of a limited 
working memory—also need not be a liability.  In fact, as the later examples show, the limited 
capacity of human working memory can actually benefit learning and vital inferences we make. 
 
The Benefit of Limited Knowledge: The Recognition Heuristic 

Most parents want their children to attend a good college.  Unfortunately, the 
overwhelming variety of institutions of higher education makes the prospect of comparing them a 
daunting one.  Just think of the many hundreds of U.S. liberal arts colleges.  How does one find 
out which are the good ones, or even just decide which of two colleges is the better one?  
Surprisingly, (partial) ignorance about the options in question can actually help people to make 



good choices.  To see how limits in knowledge—in this case about colleges—can actually be 
beneficial, imagine the following scenario.  Nearing the end of high school, three friends 
deliberate their choices of colleges.  Because they are good students, they have only applied to 
liberal arts colleges that are ranked among the top 50 in the country.  Eventually, each of the 
friends ends up with the choice between two colleges: A must choose between Middlebury and 
Vassar, B between Oberlin and Macalester, and C between Barnard and Lafayette.  Faced with 
these difficult choices, the friends turn to their parents for advice.  Here is what they are told. 

Student A’s parents just moved to the States.  Thus, they know next to nothing about 
American colleges.  In fact, they do not even recognize any of the colleges’ names, and thus they 
can only guess which of the alternatives may be the better one.  B’s parents also come from 
abroad—but they have already had the chance to absorb some knowledge about the American 
college system.  Specifically, they recognize the names Middlebury, Oberlin, and Barnard but do 
not recognize the names of the other contenders.  Having no other knowledge to go on, they tell 
the three friends to go with those recognized alternatives.  Finally, the friends turn to C’s mother 
who happens to be a college professor.  She has a lot of detailed knowledge about the colleges in 
question and can provide a plethora of information including the colleges’ academic reputation, 
financial resources, student-to-faculty ratio, graduation rate, and so on.  Pressed to answer the 
question of which is the better college in each pair of choices, she responds: “It all depends!” 

Although we all can resonate with the ideal that C’s mother represents, that knowing more 
about the alternatives in question is always better, such knowledge of multiple dimensions can 
create a predicament.  In contrast to the convenient “common currency” assumption made by 
standard models of optimization (e.g., translating everything into some amount of subjective 
expected utility), sometimes there is no way to compare all desires.  Some things are 
incommensurable and thus difficult or impossible to convert into a single currency (Elster, 1979).  
For instance, should student B go to Oberlin because it has the higher academic reputation or to 
Macalester because freshmen are more likely to return to campus the following year and 
eventually graduate (according to a recent college ranking published by U.S. NEWS2)?  That is, 
should B strive to maximize the chance to get a good job or gain admission to a top graduate 
program, or should B try to maximize the chance of graduating by attending the school that may 
be offering the classes and services students need to succeed? 

How can one escape this predicament of multiple, possibly incommensurable decision 
dimensions?  Of course, one way to avoid it (later we will turn to another) is just to be ignorant 
about the intricacies of the choice situation—as was the case for B’s parents.  But is this really a 
sensible path to take?  Won’t inferences based on pure recognition (and thus ignorance about 
other dimensions) be little more than random guesses?  In fact, they can be a lot more.  According 
to Goldstein and Gigerenzer (1999, in press), choices based on recognition alone can be 
surprisingly accurate if exposure to different possibilities is positively correlated with their 
ranking along the decision criterion being used.  They suggested that this is the case in 
environments involving competition (among colleges, baseball teams, companies, etc.).  The 
decision task they focused on is a simple and common one: Choose from two options (e.g., 
colleges) the one that has a higher value on some criterion (e.g., which is better, older, more 
expensive).  Akin to the strategy that B’s parents used, Goldstein and Gigerenzer proposed the 
recognition heuristic for this kind of task.  Simply stated, this heuristic says: If one of two objects 
is recognized and the other is not, then infer that the recognized object has the higher value. 

This minimal strategy may not sound like much for a decision maker to go on, but there is 
often information implicit in the failure to recognize something, and this failure can be exploited 
by the heuristic. To find out how good the recognition heuristic would fare in our college 
example, we conducted a small-scale study in which we asked a group of Americans and a group 
of Germans (all familiar with the academic system of their own country) to indicate which of the 
50 highest-ranked American liberal arts colleges (listed in the U.S. NEWS’ reference ranking) 
they recognized.  We expected to observe two effects: first, that the American group would 



recognize many more college names than the German group, and second, that the recognition 
validity (i.e., the percentage of correct choices among those pairs where one college is recognized 
and the other is not) would nonetheless be higher in the German group. 

This is exactly what we found.  With years of experience of the college system, the 
Americans recognized about three-quarters (75%) of the college names, while Germans 
recognized slightly more than one-fifth (22%).  In addition, we found that the average recognition 
validity was higher for the German group: .74 compared to .62 for the Americans.  What this 
means is that if we had asked our participants to choose higher-ranking colleges out of pairs of 
college names, the Germans could have used the recognition heuristic to pick those they 
recognized over those they did not, and this would have resulted in reasonably good choices (58% 
correct).  In contrast, the Americans, who recognized most college names, would have made 
fewer good choices (54% correct). 

This sounds promising in theory, but do people actually use the recognition heuristic?  
Goldstein and Gigerenzer (1999, in press) conducted a series of experimental studies that strongly 
suggested that the recognition heuristic is used.  Consider an example.  Which city has more 
inhabitants: San Diego or San Antonio?  When students at the University of Chicago were asked 
to answer questions like this by picking the larger of two American cities (comparisons 
constructed from the 22 largest in the U.S.), they scored a median 71% correct inferences.  
Surprisingly, however, when quizzed on city pairs from the 22 largest cities in Germany, the 
same students increased their score to a median 73% correct inferences. This result is 
counterintuitive when viewed from the premise that more knowledge is always better: The 
students knew a lifetime of facts about U.S. cities that could be useful for inferring population, 
but they knew little or nothing about the German cities beyond merely recognizing about half of 
them.  The latter fact, however, is just what allowed them to employ the recognition heuristic to 
pick German cities that they recognized as larger than those they did not.  The students could not 
use this heuristic for choosing between U.S. cities, though, because they recognized all of them 
and thus had to rely on additional retrievable information instead.  Goldstein and Gigerenzer 
referred to this surprising phenomenon as the less-is-more effect and showed analytically and 
empirically that an intermediate amount of (recognition) knowledge about a set of objects can 
yield the highest proportion of correct answers—knowing (i.e., recognizing) more than this will 
actually decrease the decision-making performance.  We will return below to knowledge beyond 
recognition and demonstrate that variants of the less-is-more effect also exist for other kinds of 
knowledge. 

Common wisdom has it that more knowledge or information is always better and that 
ignorance stands in the way of good decision making.  The recognition heuristic is a counter-
example to this wisdom.  It feeds on partial and nonrandom ignorance to make reasonable 
choices, and it works because our lack of recognition knowledge about, for instance, colleges, 
sports teams (Ayton & Önkal, 1997), and companies traded on a stock market (Borges, Goldstein, 
Ortmann, & Gigerenzer, 1999), is often not random, but systematic and exploitable.  Thus it is 
limited knowledge that enables the success of this powerful and very simple decision heuristic. 
 
The Benefit of a Limited Working Memory: Covariation Detection 

Writers and scientists alike agree that “the impulse to search into causes is inherent in 
man’s very nature” (Tolstoy, 1982/1869, p, 1168), and that “humans exhibit an almost obsessive 
urge to mold empirical phenomena conceptually into cause-effect relationships” (Pearl, 1988, p. 
383).  Whatever the reasons for this human “obsession” with causality, the key point for our 
discussion is that limitations in human cognitive capacity may lay the groundwork for inferences 
of causality in terms of the early detection of covariation.  In a series of papers, Yaakov Kareev 
(1995a,b; 2000; Kareev, Lieberman, & Lev, 1997) advanced the argument that limitations of 
working memory capacity force people to rely on small samples of information drawn from real-



world environments (and from their long-term memory).  Small samples of information, however, 
have a specific advantage: They maximize the chances for early detection of a correlation. 

Kareev’s argument runs as follows.  To determine whether two variables covary (e.g., does 
flight behavior trigger a predator’s chase behavior), one typically relies on data sampled from 
one’s environment (and prior expectations; see Alloy & Tabachnik, 1984).  If the assessment of a 
covariation has to be made “on the fly,” then the limited capacity of working memory imposes an 
upper bound on the size of the information sample that can be considered at one time.  What is 
the size of the working memory and consequently the size of the information sample from which 
inferences are drawn?  As we all know, the classic estimate for short-term memory is 7±2 chunks 
(Kareev uses the term “working memory,” akin to the earlier concept “short-term memory”, but 
see Baddeley, 2000, on the different meanings of the term working memory).  Taking Miller’s 
(1956) estimate as a starting point, Kareev et al. (1997; Kareev, 2000) suggested that the limited 
capacity of working memory increases the chances for early detection of a correlation.3  Here is 
the rationale. 

Drawing small data samples increases the likelihood of encountering a sample that 
indicates a stronger correlation than that of the population.  To see why, imagine drawing many 
small data samples of two continuous variables (for binary variables the argument works slightly 
different, see Kareev, 2000).  If for each sample one calculates the relationships between the two 
variables (i.e., the Pearson’s product-memory correlation) and plots the distribution of the 
correlation coefficients found in the samples, then the resulting sampling distribution will have a 
characteristic shape: Unless the correlation in the population is zero, the sampling distribution of 
the correlation will be skewed, with both the median and the mode of the distribution more 
extreme than the population value (see Hays, 1963, p. 530).  Moreover, the amount of 
skewedness is a function of the sample size: The smaller the sample, the more skewed the 
resulting distribution. 

In other words, for small sample sizes, many more samples will exhibit a sample 
correlation higher than the correlation in the population.  Thus, when drawing a random sample 
from a population in which a correlation exists, any random sample is more likely than not to 
indicate a correlation more extreme than that found in the population.4  Thus, the limited working 
memory functions as an amplifier of correlations.  Consistent with this thesis, Kareev et al. (1997) 
found that people with smaller working-memory capacity detected correlations faster and used 
them to make correct predictions better than people with larger working-memory capacity.  
Moreover, they observed that the detection of correlation improved when it was based on smaller 
samples. 

This theoretical account and empirical observations suggest a new and interesting view of 
cognitive limitations in general.  In Kareev’s view, cognitive limitations in working memory are 
not a liability but in fact enable important adaptive functions such as the early detection of 
covariation.  The ability to detect contingencies early seems particularly important in domains in 
which the benefits of discovering a contingency outweigh the costs of false alarms. (Note that the 
smaller the data sample from which the contingency is inferred, the greater the variability of the 
sampling distribution and consequently the danger of a false alarm).  Such domains include, for 
instance, threats in which misses would be extremely costly. 
 
Another Benefit From a Limited Memory Span: Language Learning 

Another domain where limitations are beneficial, possibly even a prerequisite for maximal 
success, is language learning.  According to Newport (1990), lesser ability to process and 
remember form-meaning mappings in young children allows them to learn more accurately those 
mappings that they do acquire and then to build further upon these as language learning proceeds.  
Late language learners, in contrast, may falter when attempting to learn the full range of semantic 
mappings with their mature mental capacities all at once. 



This situation has been studied concretely by Elman (1993) in a neural network model of 
language acquisition.  When he tried to get a large, recurrent neural network with an extensive 
memory to learn the grammatical relationships in a set of several thousand sentences of varying 
length and complexity, the network faltered.  It was unable to pick up such concepts as noun-verb 
agreement in embedded clauses, something that requires sufficient memory to keep embedded 
and non-embedded clauses disentangled.  Instead of taking the obvious step of adding more 
memory to the model to attempt to solve this problem, though, Elman counter-intuitively 
restricted its memory, making the network forget everything after every three or four words.  He 
hoped in this way to mimic the memory restrictions of young children first learning language.  
This restricted-memory network could not possibly make sense of the long clause-filled sentences 
it was exposed to.  Its limitations forced it to focus on the short simple sentences in its 
environment, which it did learn correctly, mastering the small set of grammatical relationships 
inherent in this subset of its input.  Elman then increased the network’s effective memory by 
forcing it to forget everything after five or six words.  It was now able to learn a greater 
proportion of the sentences it was exposed to, building on the grammatical relationships it had 
already acquired.  Further gradual enhancements of the network’s memory allowed it ultimately 
to learn the entire corpus of sentences that the full network alone—without the benefit of starting 
small—had been unable to fathom. 

Elman sees the restrictions of the developing mind as enabling accurate early learning 
about a small portion of the environment, which then provides a scaffold to guide learning and 
hypothesizing about the rest of the environment in fruitful, adaptive directions.  Cognitive 
“constraints” are no longer a negative limitation of our (or our children’s) ability to behave 
adaptively in our environment. Rather, 

 
the early limitations on memory capacity assume a more positive character.  One might 
have predicted that the more powerful the network, the greater its ability to learn a complex 
domain.  However, this appears not always to be the case.  If the domain is of sufficient 
complexity, and if there are abundant false solutions [e.g., local error minima in a neural 
network’s solution space], then the opportunities for failure are great.  What is required is 
some way to artificially constrain the solution space to just that region which contains the 
true solution.  The initial memory limitations fill this role; they act as a filter on the input, 
and focus learning on just that subset of facts which lay the foundation for future success. 
(Elman, 1993, pp. 84-85)   
 

Thus, a smaller memory span should not be seen as a constraint on language learning, but rather 
as an enabler of learning, as Cosmides and Tooby (1987, p. 301) have put it. 

Let us conclude this section with a cautionary note: We should be careful not to extend 
these arguments automatically to every problem environment that humans face—language, after 
all, has evolved culturally to be something that our fast and frugal developing minds can readily 
learn.  But further explorations beyond Kareev’s and Elman’s work should reveal other domains 
where limited memory enables rather than constrains inference or learning. 

 
 

Thesis 2: Cognitive Limitations and Simple Processing Need not Be 
Equated with Inferior Performance 

 
Scientific theorizing, visions of rationality, and common wisdom alike appear to share a 

mutual belief: the more information that is used and the more it is processed, the better (or more 
rational) the choice, judgment, or decision will be.  This belief is not just an inconsequential idea 
that people might have. It affects, for instance, how we set up our information environments.  
According to Andrew Dillon (1996), for instance, “the belief that enabling access to, and 



manipulation of masses of information … is desirable and will somehow increase learning 
(however measured) is ever-present in discussions on educational hypertext” (p. 31).  In his view, 
however, “to date, the claims have far exceeded the evidence and few hypertext systems have 
been shown to lead to greater comprehension or significantly better performance. ...This concern 
with vast information sources over real human needs betrays the technocentric values of its 
proponents even while they talk in user-centred terms” (p. 32). 

What is the evidence that more information and more complex processing is a priori better, 
or vice versa, that less information and less processing a priori impairs performance?  The 
research program that has most strongly advocated the view that less processing, via the use of 
simple cognitive heuristics (relying on simple psychological principles such as associative 
strengths), can yield severe and systematic errors is the heuristics-and-biases program 
(Kahneman, Slovic, & Tversky, 1982).  Specifically, this program attributes numerous departures 
from classical probability norms in inductive reasoning—“cognitive illusions,” such as 
overconfidence, base-rate neglect, and the conjunction fallacy—to the application of heuristics 
(Kahneman & Tversky, 1996).  Some have argued that these departures “should be considered the 
rule rather than the exception” (Thaler, 1991, p. 4), while others have shown that a simple change 
in the way statistical information is represented—from single-event probabilities to frequencies—
substantially reduces those departures (e.g., Gigerenzer, 1991; Gigerenzer & Hoffrage, 1995; 
Hertwig & Gigerenzer, 1999; but see Mellers, Hertwig, & Kahneman, in press). 

Are violations of rational norms really the rule, and is simple processing to be equated with 
inferior performance?  Taken at face value, the research in the tradition of the heuristics-and-biases 
program suggests a positive answer.  However, Kahneman and Tversky (1982, p. 124) themselves 
acknowledged that “although errors of judgments are but a method by which some cognitive 
processes are studied, the method has become a significant part of the message.”  It appears that as a 
consequence of the exclusive focus on errors, the original assessment of heuristics as “highly 
economical and usually effective” (Tversky & Kahneman, 1974, p. 1131) has been largely ignored, 
and research in the tradition of the heuristics-and-biases program has been mute on questions such as 
when and why simple heuristics yield good performance.  Exactly these kinds of questions, however, 
are being addressed in a new research program that explores the performance of simple decision 
heuristics.  The research program on fast and frugal decision heuristics (Gigerenzer, Todd, & the 
ABC Research Group, 1999) challenges the equation of simple processing and inferior performance. 
 
Simple Heuristics That Make Us Smart 

Earlier, we introduced one fast and frugal decision rule studied within this program, the 
recognition heuristic.  It exploits the knowledge of whether or not an option (e.g., a college name) 
has ever been encountered before.  Often, however, more than just this type of information is 
accessible.  In what follows, we describe two more fast and frugal heuristics that can be applied if 
more than just recognition knowledge is available.  To illustrate how they work, let us return to 
our introductory example—deciding which of two colleges is better. 

How would a rational agent make this decision?  Two commandments that are often taken 
as characteristics of rational judgments are complete search and compensation (see Gigerenzer & 
Goldstein, 1999).  The former prescribes, “thou shalt find all the information available,” while the 
latter says, “thou shalt combine all pieces of information” (i.e., not rely on just one piece).  Thus, 
to decide which college is better, the decision maker ought to retrieve all the information 
available (either from internal or external memories), and then somehow combine the pieces of 
information into a single judgment (typically this implies that the information will first be 
weighted according to its predictive value for the decision criterion). 

More or less the exact opposite of this “rational” approach is to rely on just a single 
dimension to make the decision.  Such a strategy simultaneously violates the commandments of 
complete search and compensation.  Here is how it would work: Imagine that the goal is to select 
one object (e.g., college) from two possibilities, according to some criterion on which the two can 



be compared (e.g., ranking).  Several decision dimensions (cues) could be used to assess each 
object on the criterion.5  A one-reason heuristic that makes decisions on the basis of a single cue 
could then work as follows: 

(1) Select a cue dimension and look for the corresponding cue values of each object. 
(2) Compare the two objects on their values for that cue dimension. 

(3) If they differ, then stop and choose the object with the cue value indicating a greater value on 
the choice criterion. 

(4) If the objects do not differ, then return to the beginning of this loop (step 1) to look for 
another cue dimension. 

Such a heuristic will often have to look up more than one cue before making a decision, but 
the simple stopping rule (in step 3) ensures that as few cues as possible will be sought, thus 
minimizing the information-searching time taken.  Furthermore, ultimately only a single cue will 
be used to determine the choice, minimizing the amount of computation that must be done. 

This four-step loop incorporates two of the three important building blocks of simple 
heuristics (as described in Gigerenzer & Todd, 1999): a stopping rule (step 3) and a decision rule 
(also step 3—deciding on the object to which the one cue points).  To finish specifying a 
particular simple heuristic of this type, we must also determine just how cue dimensions are 
“looked for” in step 1.  That is, we must pick a specific information search rule—the third 
building block.  Two intuitive search rules are to search for cues in the order of their ecological 
validity (i.e., their predictive power with regard to the decision criterion) or to select cues in a 
random order.  In combination with the stopping and decision rules described above, the former 
search rule makes up the Takes The Best heuristic, and the latter makes up the Minimalist 
heuristic (Gigerenzer & Goldstein, 1996).  

Both heuristics disobey the commandments of complete search and compensation.  Could 
such an ungodly approach possibly work?  To answer this question, Czerlinski, Gigerenzer, and 
Goldstein (1999) used a set of 20 environments to test the heuristics’ performance.  The 
environments varied in number of objects and number of available cues and ranged in content 
from high-school dropout rates to fish fertility.  The decision accuracy of Take The Best and 
Minimalist were compared against those of two more-traditional decision mechanisms that use all 
available information and combine it in more or less sophisticated ways: multiple regression, 
which weights and sums all cues in an optimal linear fashion, and Dawes’s Rule, which tallies the 
positive and negative cues and subtracts the latter from the former.  

How did the two fast and frugal heuristics fare?  They always came close to, and often 
matched, the performance of the traditional algorithms when all were tested on the data they were 
trained on—the overall average performance across all 20 datasets is shown in Table 1 (under 
“Fitting”).  This surprising performance on the part of Take The Best and Minimalist was 
achieved even though they only looked through a third of the cues on average (and decided using 
only one of them), whereas multiple regression and Dawes’s Rule used them all (see Table 1, 
“Frugality”).  The advantages of simplicity grew in the more important test of generalization 
performance, where the decision mechanisms were tested on a portion of each dataset that they 
had not seen during training.  Here, Take The Best outperformed all three other algorithms by at 
least 4% (see Table 1, “Generalization”).  

To conclude, making good decisions need not rely on the standard rational approach of 
collecting all available information and combining it according to the relative importance of each 
cue—simply betting on one good reason, even one selected at random, can provide a competitive 
level of accuracy in a variety of environments.  Of course, not all choices in life are presented to 
us as convenient pairs of options.  Do the results on the efficacy of simple heuristics hold beyond 
the context of deliberated choices?  The answer is yes.  Limited processing of limited information 
can also suffice to perform such taxing tasks as estimating a precise criterion value (see Hertwig, 
Hoffrage, & Martignon, 1999) and choosing the one category, from several possible, that a given 
object falls into (Berretty, Todd, & Martignon, 1999).  In short, psychological plausibility and 



precision are not irreconcilable, and simple processing need not be equated with inferior 
performance. 

 
 

Thesis 3: Cognitive Limitations May Be a By-product of the 
Evolution of Simple Strategies 

 
Whereas there is little dispute that we humans often employ simple shortcuts or heuristics 

to reach decisions, there is much debate about how we use them—at our peril or to our advantage 
(e.g., Kahneman et al., 1982; Chase, Hertwig & Gigerenzer, 1998; Gigerenzer et al., 1999).  An 
issue that seems equally important but to date has received hardly any attention is this: Why is 
our mental machinery equipped with simple heuristics in the first place?  One likely reason why 
this question is hardly addressed is that there is an apparently convincing straightforward answer: 
Humans rely on simple heuristics not because they choose to but because we have only limited 
processing capacities at our disposal.  They, in turn, dictate the use of strategies that do not 
overtax our precious processing resources.  Payne, Bettman, and Johnson (1993), for instance, put 
this traditional argument very clearly: “…our basic thesis is that the use of various decision 
strategies [including simple heuristics] is an adaptive response of a limited-capacity information 
processor to the demands of complex task environments” (p. 9). 

Why is this argument not necessarily as plausible as it appears at first glance?  The reason 
(see also Todd, in press) is that given sufficient adaptive pressure to succeed in complex tasks, 
evolution could have built complex and sophisticated information-processing structures so that 
human cognitive machinery would not need to rely on simple, sometimes erroneous, heuristics.  
In other words, cognitive limitations could have been circumvented over the course of 
evolution—certainly at a price, such as the considerable costs involved in bearing a large-headed, 
long-dependent human baby, or the costs of high-energy expenditure for maintaining the 
metabolism of a large brain.  That a human mind, in theory, could have evolved to be less subject 
to bounds in its memory and processing capacity is evidenced both by the prodigious processing 
that evolution provided for the seemingly more elementary processes such as perception or motor 
coordination, and by the extraordinary abilities of a few exceptional individuals (some of whom 
we listed in the introduction; see also Sacks, 1995). 

If, for a moment, we do not take cognitive limitations as a given but conceive of cognitive 
capacity as a free parameter that has been adjusted in the course of evolution, then a bold 
alternative answer arises to the question of why humans are equipped with cognitive limitations.  
In contrast to the traditional view, heuristics may not be dictated by cognitive limitations; rather, 
the evolution of simple heuristics may have required the evolution of no more than a certain 
limited amount of cognitive capacity, namely, the amount that was needed to execute them.  This 
view reverses the traditional causal direction—from limitations that lead to heuristics to heuristics 
that require a certain, limited amount of capacity.  This argument, however, can only work if 
simple heuristics had a selective advantage over more complex cognitive strategies (that would 
have required more processing power).  What could those advantage(s) have been?  Being fully 
aware that any answer to this question is speculative, we suggest two plausible candidate 
advantages—speed and robustness. 

 
The Importance of Speed 

One of the most pressing concerns facing a variety of organisms in a variety of dynamic 
environmental situations is simply the passage of time.  This pressure arises primarily through 
competition between organisms, in two main ways.  First, time is short: organisms have 
occasional speed-based encounters where the slower individual can end up at a serious 
disadvantage, for instance being slowly digested by the faster.  Second, time is money, or at least 
energy: beyond predator-prey or combative situations, the faster an individual can make decisions 



and act on them to accrue resources or reproductive opportunities, the greater adaptive advantage 
it will have over slower conspecifics. 

The speed argument, however, faces an important objection.  Speed is only a precious 
resource if one assumes that search for information and processing of the retrieved information 
occurs serially.  If, however, our mental hardware operates in a parallel fashion, then even 
extensive search for information and sophisticated processing of it can occur rapidly.  In other 
words, in a parallel machine time is not a limiting factor.  How could the parallel processing 
argument be countered?  While this argument may be valid (to the extent that our mind is a 
parallel machine) for processes within the mind, it is not applicable to processes outside of the 
mind—in particular, the process of search for information (e.g., the values of an object on various 
cue dimensions) in external sources.  On an individual level, search for information in our 
environment occurs serially (ignoring the fact that our different senses can search in a parallel 
fashion).  Based on this reasoning, it is possible that many human decision heuristics were 
selected to achieve speed by seeking to use as little information from the environment as they 
could get away with. 

All this is not to say that the entirety of human thought can be or should be characterized by 
simple heuristics—humans are uniquely able to set aside such mental shortcuts and engage in 
extensive cogitation, calculation, and planning—but that we spend much of our time not taking 
the time to think deeply. 

 
The Importance of Robustness 

Learning means generalizing from the known to the unknown.  This process of 
generalization has an element of gambling because the known information has both inherent 
structure and noise.  Only the inherent structure, however, generalizes beyond the known 
information, and therefore this is what a learning model (e.g., a decision strategy) should capture.  
Computationally powerful strategies (e.g., neural networks, multiple regression) have the 
objective to build a model of the known territory that is as perfect as possible and thus 
incorporate and account for as much of the know data as possible.  Such a strategy is extremely 
successful if the known territory is large compared to the unknown, and if the known data 
includes little noise.  If the known territory, however, is small or includes much noise, then trying 
to capture the known as precisely as possible turns out to be costly.  Why?  Because it means 
reliance not only on the inherent structure but also on the idiosyncrasies of the specific known 
information. 

Take the 2000 U.S. presidential election as an example.  Let us assume that the known data 
would only consist of the election outcome in the State of Florida, while the outcomes in the other 
states had to be predicted.  As we all remember vividly, the outcome of the election in Florida 
was subject to many variables—some of them undoubtedly meaningful beyond Florida (e.g., 
socio-economic variables, the ethnic composition of Florida’s constituency, etc.), others only 
relevant (if at all) in the context of Florida’s election turmoil (e.g., poorly drafted “butterfly” 
ballots in one county, the secretary of state’s interpretation of her “discretion,” etc.).  Although 
across all 50 U.S. states  there is likely to be no true causal relationships between the election 
outcome and the variables idiosyncratic to Florida, the Florida sample of known data may 
(erroneously) indicate such relationships.  Any inference model that tried to incorporate these 
idiosyncracies to predict the election outcomes in the other states would be in danger of impairing 
its predictive power.  In other words, it would “overfit” the know data. 

How does the problem of “overfitting” relate to our thesis, namely, that simple heuristics 
may have had a selective advantage over more complex cognitive strategies?  The argument we 
submit is that simple models are less prone to overfitting because they are parsimonious, using 
only a minimum number of parameters and thus reducing the likelihood of fitting noise (see 
Martignon & Hoffrage, 1999).  Of course, there is a limit to simplicity, and there is “ignorant” 
simplicity (as in the case of that Minimalist heuristic, which randomly selects cues) and “smart” 



simplicity (as in the case of Take The Best heuristic, which searches for one noncompensatory 
good reason, assuming that the structure of information is skewed in a noncompensatory way). 

Are fast and frugal heuristics in fact robust, that is, do they generalize well from known to 
unknown territory?  Using extensive simulations, we have consistently observed that simple 
heuristics are in fact more robust than computationally complex strategies (see, for example, 
Gigerenzer & Goldstein, 1999; Czerlinski et al., 1999).  Take the QuickEst heuristic (Hertwig, 
Hoffrage, & Martignon, 1999) as an example.  The QuickEst heuristic is designed to estimate the 
values of objects along some criterion (e.g., how many people live in Maine) using as little 
information as possible.  QuickEst does so by betting that the environment follows a J-
distribution, in which small values are common and big values are rare (here the “J” is rotated 
clockwise by 90 degrees).  Such distributions characterize a variety of naturally occurring 
phenomena including many formed by accretionary growth and phenomena involving 
competition (e.g., scientific productivity). 

How well would QuickEst do if it were to learn cues from a small sample?  QuickEst 
extracts from a learning sample only the order and sign of the cues, a very small amount of 
information compared to the information extracted by complex statistical procedures such as 
multiple regression (which extracts least-squares minimizing cue weights and covariances 
between cues).  Which is the better policy?  Figure 1 shows QuickEst competing with multiple 
regression at making generalizations from a training set to a test set.  Each strategy estimated its 
respective parameters from a proportion (10% to 100%) of the real-world environment of German 
cities with more than 100,000 inhabitants and values on eight ecological cues to population size 
(e.g., is the city located in the industrial belt) and made predictions about the complement. 

 
[Insert Figure 1] 

 
Although (or because) QuickEst considers, on average, only 2.3 cues per estimate (out of 8 

available cues), thus using only 32% of the information exploited by multiple regression, it 
exceeded the performance of multiple regression when the strategies had only scarce knowledge 
(i.e., knew a third or fewer of the cities).  When half of all cities were known, QuickEst and 
multiple regression performed about equally well.  When the strategies had complete knowledge 
(all cities are known), multiple regression outperformed QuickEst by a relatively small margin.  
In other words, in the likely context of little to medium knowledge QuickEst either matched the 
performance of multiple regression or outperformed it.  Only when all knowledge was 
available—a situation that is rather unlikely to arise in most real-world domains—did multiple 
regression outperform QuickEst (by a small margin). 

 
[Insert Figure 2] 

 
QuickEst’s surprising performance is even more pronounced in a more difficult situation.  

Figure 2 shows the results for a simulation in which one-fourth or half of the cue values were 
eliminated from the environment (German cities) before the training and test sets were created, 
thus adding noise to the known data.  Adding additional noise to the available information 
amplified QuickEst’s edge over multiple regression: When only half of the cue values were 
known, QuickEst outperformed multiple regression throughout the training sets (except for the 
100% training set), and again the advantage was particularly pronounced when the training sets 
were small. 

The performance figures for QuickEst and for other fast and frugal strategies (e.g., see 
Czerlinski et al., 1999; Gigerenzer & Goldstein, 1999) demonstrate that, on these data sets, 
simple heuristics are less prone to overfitting a known environment and are thus more robust 
when generalizing to new environments than are more complicated statistical procedures such as 
multiple regression. 



To conclude, in combination with their speed, robustness under conditions of limited 
knowledge may have provided simple strategies with a selective advantage over more 
complicated strategies.  Cognitive limitations could thus be the manifestation of the evolutionary 
success of simple strategies rather than their origin. 

 
 

Conclusion 
 

In this chapter, we proposed a different view of the role of cognitive limitations.  In this 
view, cognitive limitations (regarding knowledge and processing capacity) are not a nemesis—
rather, they can enable important adaptive functions.  Secondly, we demonstrated that decision-
making strategies that take limitations into account need not be less accurate than strategies with 
little regard for those limitations.  In opposition to the traditional view, according to which 
cognitive limitations dictate the use of simple heuristics, we finally proposed that some cognitive 
limitations may follow from the evolution of simple strategies.  

There are different ways to think about and analyze the possible functions of cognitive 
limitations.  One approach we did not pursue is to think about how a mind equipped with 
boundless capacities would function in the real world.  Others, however, have taken this 
approach.  Conducting a literary “Gedanken-experiment,” the writer Jorge Luis Borges (1998) 
tells the story of a man, Ireneo Funes, who, after a fall from a horse, found that his perception and 
memory had become essentially limitless.  How did this man’s perception of the world change as 
a function of his new abilities?  Borges asserts that despite having an infinite memory, Funes is 
“not very good at thinking” (p. 137).  Funes “was virtually incapable of general, platonic ideas … 
it irritated him that the ‘dog’ of three-fourteen in the afternoon, seen in profile, should be 
indicated by the same noun as the dog of three-fifteen, seen frontally” (p. 136).  His mind consists 
of such perfect memory that no room exists for human creativity to link two dissimilar objects.  In 
Borges’ view, “to think is to ignore (or forget) differences, to generalize, to abstract” (p. 137), 
while Funes’ memory is like a “garbage heap,”(p. 135) which whether he liked it or not stored 
everything, the trivial and the important indistinguishably. 

Are these in fact the regrettable consequences of a perfect memory?  Would we, as Borges 
suggests, become unable to function normally, because we were lost in a perpetual flux of unique 
instants of experience?  Fortunately, we do not have to rely on our imagination (or on Borges’ for 
that matter) to answer this question.  There are real cases that approximate the Gedanken-
experiment Borges engaged in,  for instance, the wonderfully documented and fascinating case of 
S. V. Shereshevskii, a Russian memory-artist whose multi-sensory memory was studied over four 
decades by the neurologist A.L. Luria (1968/1987). 

Resonating with Borges’ portrayal of Funes, Luria described the most significant cost of 
possessing a memory that had “no distinct limits” (p. 11) as the inability to generalize, 
summarize, and use abstractions.  Shereshevskii told Luria: “I can only understand what I can 
visualise” (p. 130).  He “was unable to grasp an idea unless he could actually see it, and so he 
tried to visualize the idea of ‘nothing,’ to find an image with which to depict ‘infinity.’  And he 
persisted in these agonizing attempts all his life, forever coping with a basically adolescent 
conflict that made it impossible for him to cross that ‘accursed’ threshold to a higher level of 
thought” (p. 133). 

To have “more memories than all mankind since the world began” (Ireneo Funes in 
Borges, 1998, p. 135) may not be so desirable after all. 
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Footnotes 
 

1 There are important exceptions such as parallel distributed memory models that disregard 
limited processing capacities by, for instance, assuming that search for a piece of information 
occurs simultaneously across multiple locations.  In addition, there is evidence that the amount of 
information that can be held and processed in working memory can be greatly increased through 
practice (Ericsson & Kintsch, 1995; Kliegl, Smith, Heckhausen, & Baltes, 1987), thus putting 
very narrow estimates of capacity limits somewhat into perspective. 

 
2 The college rankings can be found at the following location: http://www.usnews.com/ 

usnews/edu/college/rankings/natlibs/natliba2.htm. 
 
3 In a recent review article, Cowan (2001) concluded that over 40 years after Miller’s 

seminal paper, we are still uncertain about the nature of the storage limit.  For instance, according 
to some theories there is no limit in storage per se, but a limit on the time an item can remain in 

mailto:hertwig@paradox.psych.columbia.edu;
mailto:ptodd@mpib-berlin.mpg.de


STM without being rehearsed.  Cowan also argued that the storage limit itself is also open to 
considerable differences of opinion, but concluded that “the evidence provides broad support for 
what can be interpreted as a capacity limit of substantially fewer than Miller’s 7±2 chunks; about 
4 chunks on the average” (emphasis is Cowan’s, p. 3). 

 
4 This skewed distribution is related to the fact that correlation coefficients are truncated, 

with their absolute values not exceeding 1 or -1.  Assume the correlation coefficient in the 
population is .8.  Sample correlations can deviate in two directions from the population 
parameter: They can be larger or smaller.  A deviation above, however, can at most be .4, while a 
deviation below can go as far as -1.8.  To offset the (few) very large deviations in the “wrong” 
direction, there must be many more (smaller) deviations in the “right” direction.  From this 
follows that one is more likely to encounter a sample correlation that amplifies the population 
value than a sample correlation that attenuates it. 

 
5 Cues can be either binary (e.g., Is the college in the northeast of the U.S?) or continuous 

(e.g., What is the student-faculty ratio?).  For practical purposes, continuous variables can be 
dichotomized (e.g., by a median split). 

 
 

Figure captions 
 

Figure 1. QuickEst’s and multiple regression’s mean absolute error (i.e., absolute deviation 
between predicted and actual size) as a function of size of training set.  Vertical lines represent 
standard deviations.  Note that some of the points have been offset slightly in the horizontal 
dimension to make the error bars easier to distinguish, but they correspond to identical training 
set sizes. 
 
Figure 2. QuickEst’s and multiple regression’s mean absolute error (i.e., absolute deviation 
between predicted and actual size) as a function of size of training set and of the amount of 
knowledge of cue values (75% and 50%).  Vertical lines represent standard deviations. 
 
 
Table 1. Performance of different decision strategies across 20 data sets. 
Note: Performance of two fast and frugal heuristics (Minimalist, Take The Best) and two linear 
strategies (Dawes's rule, multiple regression) across 20 data sets.  The mean number of predictors 
available in the 20 data sets was 7.7.  “Frugality” indicates the mean number of cues actually used 
by each strategy.  “Fitting accuracy” indicates the percentage of correct answers achieved by the 
strategy when fitting data (test set = training set).  “Generalization accuracy” indicates the 
percentage of correct answers achieved by the strategy when generalizing to new data (cross-
validation, where test set ≠ training set).  (Data from Czerlinski, Goldstein, & Gigerenzer, 1999.) 
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FIGURE 2 
 



 

Performance of Different Decision Strategies Across 20 Data Sets 
 

Strategy Frugality Accuracy (% correct) 
  Fitting Generalization 

Minimalist 2.2 69 65 

Take The Best 2.4 75 73 

Dawes’s Rule 7.7 73 69 

Multiple regression 7.7 77 68 
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