Statistics and Quantitative Analysis U4320

Segment 4:

Probability Distributions: Univariate \& Bivariate URL: http://www.columbia.edu/itc/sipa/U4320y-003/

Probability Distributions

- Outline
- Focus on the distribution of a single event
- Discrete random variables : Probability Tables
- Continuous random variables
- Probability distributions
- Normal density curve
- Distribution of two variables

Prof. Sharyn O'Halloran

Copyright Sharyn O'Halloran 2001

- Joint probability
- Covariance
- Correlation

Probability Distributions:

Discrete Random Variable

- Definition
- A discrete random variable X has a finite number of possible values.
- The probability distribution of X lists the values and their probabilities:

Value of X	X_{1}	X_{2}	X_{3}	\ldots	X_{k}
Probability	P_{1}	P_{2}	P_{3}	\ldots	P_{k}

- The probabilities p_{i} must satisfy:
- Every probability p_{i} lies between 0 and 1 .
- $\mathrm{p}_{1}+\mathrm{p}_{2}+\ldots+\mathrm{p}_{\mathrm{k}}=1$

Copyright Sharyn O'Halloran 2001

Probability Distributions:

Discrete Random Variable (con't)

- Example: Distribution of grades in a large class
- 15% of the students get A's and D's, 30% receive B's and C's, and 10\% F's.
- How can we put this into a table? (convert the grade to a 4 pt. scale)

Grade	$\mathrm{F}=0$	$\mathrm{D}=1$	$\mathrm{C}=2$	$\mathrm{~B}=3$	$\mathrm{~A}=4$
Probability	.10	.15	.30	.30	.15

- The probability of getting a B or better is:
- $\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})=.15+.30=.45$

Probability Distributions:

Discrete Random Variable (con't)

How would we represent the grades as a distribution?

Probability Distributions:

Discrete Random Variable (con't)

- How do discrete probability tables relate to continuous distributions?
- What is the probability of getting a head?
(1 coin toss)

Probability Distributions(cont.)

- Now say we flip the coin twice.
- The picture now looks like:

Probability Distributions(cont.)

- As number of coin tosses increases,
- The distribution looks like a bell-shaped

Copyright Sharyn O'Halloran 2001
curve: flips.xls

Probability Distributions:

Continuous Random Variable

Definition:

- A continuous random variable is a variable which can take on an infinite (uncountable) number of values
- Example:
- Suppose the time taken by all workers to commute from home to work falls between 5 minutes (min) and 130 minutes (max).
- Then x can assume any value in the interval 5 to 130 minutes.
- The interval contains an infinite number of possible values
- The probability of any one (exact) value is zero.
- Solution:
- Need to define a probability distribution over continuous range
- Need to be able to calculate probabilities of possible events

Probability Distributions(cont.)

Probability distributions are idealized bar graphs or histograms.

- The curve is drawn so that the total area underneath it is equal to 1
- The probability of any one value is 0 ; e.g., $p(x=9)=0$
- But the probability of a range of values is welldefined; e.g., $\mathrm{p}(4 \leq \mathrm{x} \leq 6)=.32$

Total Area $=1$

Copyright Sharyn O'Halloran 200

Probability Distributions:

Continuous Random Variable

- Definition:
- A continuous random variable X takes all values in an interval of numbers
- The probability distribution of X is described by a density curve.
- The probability of any event is the area under the density curve and above the values of X that make up the event.
- Any density curve gives the distribution of a continuous random variable. (e.g. normal curve)
- Normal distributions as an idealized description of data are closely related to normal probability distributions.

Copyright Sharyn O'Halloran 2001

Probability Distributions:

Normal Distribution

Probabilities are areas under the curve.

- Mean μ describes the central tendency
- Changing μ w/o changing σ moves the curve horizontally

Unimodal distribution
Total area unde
the curve $=1$

Copyright Sharyn O'Halloran 200

Probability Distributions:

Normal Distribution

- Standard deviation σ controls the spread of the curve - normal curves can be:

As σ changes, so does the shape of the curve.

- As σ increases the curve becomes more spread out
- As σ decreases the curve becomes less spread out.

Probability Distributions:

Normal Distribution

- But they all follow the 68-95-99.7 Rule:
- 68% of the observations fall within σ of the mean μ
- 95% of the observations fall within 2σ of μ.
99.7% of the observations fall within 3σ of μ.

Copyright Sharyn O'Halloran 2001

Probability Distributions:

Example: SIPA Salaries

Distribution of salaries for female SIPA graduates

- Mean $\mu=\$ 64,500$; Standard Deviation $\sigma=\$ 2,500$
- What is the area representing 2 standard deviations from the mean?

- What if $\sigma=\$ 2,000$?

Copyright Sharyn O'Halloran 2001

Probability Distributions:

Standard Normal Distribution

Definition:

- Standard Normal Curve is a normal distribution with mean 0 and standard deviation 1.
- Characteristics
- continuous distributions
- symmetric
- Unimodal
- Z-values

- points on the x-axis that show how many standard deviations the observation is away from the mean μ

Probability Distributions:

Standard Normal Distribution (cont.)

- Example: Height of people are normally distributed with mean 5'7"
- What is the proportion of people taller than 5'7"?

Copyright Sharyn O'Halloran 2001

Probability Distributions:

How to Calculate a Z-score

- Z-Score
- Z-value is the number of standard deviations away from the mean
- Z-tables give the probability (score) of observing a particular z-value or greater
. You can calculate any area under the standard normal curve using a combination of z -scores.
- Finding a z-Score
- Use z-Tables in back of book
- First two digits come from the left column
- Third digit comes from the top right
- Or, use online sources!

Probability Distributions:

How to Calculate a Z-score (cont.)

- What is the area under the curve that is greater than 1 ?
- Prob ($Z>1$)
- The entry in the table is 0.159 , which is the total area to the right of 1 .

Probability Distributions:

How to Calculate a Z-score (cont.)

- What is the area to the right of 1.64 ?
- Prob (Z > 1.64)
- The table gives 0.051 , or about 5%.

Probability Distributions:

How to Calculate a Z-score (cont.)

- What is the area to the left of -1.64 ? - Prob (Z < -1.64)

Probability Distributions:

How to Calculate a Z-score (cont.)

- How would you figure out the area between 1 and 1.5 on the graph?
- Prob ($1<Z<1.5$)

- What is the probability that an observation lies between 0 and 1 ?
- Prob ($0<Z<1$)

Probability Distributions:

How to Calculate a Z-score (cont.)

Probability Distributions:

How to Calculate a Z-score (cont.)

- What is the area between -1.96 and 1.96 ?
- $\operatorname{Prob}(-1.96<Z<1.96)$
. $1-\operatorname{Prob}(Z<-1.96)-\operatorname{Prob}(Z>1.96)$
$.=1-.025-.025=.9500$

Copyright Sharyn O'Halloran 2001

Probability Distributions:
 Standardization

- Standard Normal Distribution
- SND is a special case where
- the mean of distribution equals 0 and
- the standard deviation equals 1 .
- But you can convert any normal curve to a SND

Probability Distributions:
 Standardization (cont.)

- Case 1: standard deviation differs from 1
- Take a normal distribution with mean 0 and some standard deviation σ.
- Convert any point x to the standard normal distribution by changing it to x / σ.
- For example, change each x in the figure below to $\mathrm{x} / 3$ to get a standard normal

Probability Distributions:

Standardization (cont.)

- Case 2: Mean differs from 0
- Take a normal distribution with mean μ and standard deviation 1
- You can convert any point x to the standard normal distribution by changing it to $x-\mu$
- I.e., what is the area between 50 and 52 in the figure?

Probability Distributions:

Standardization (cont.)

General Case:

- Mean not equal to 0 and Standard Deviation not

Probability Distributions:

Standardization (cont.)

 equal to 1- Say you have a normal distribution with mean μ \& standard deviation σ.
- You can convert any point x in that distribution to the same point in the standard normal by computing

$$
Z=\frac{x-\mu}{\sigma}
$$

- This is called standardization
- The Z-value is the equivalent of the original x value
- You can then look up the Z-value in the normal table Copyright Sharyn O'Halloran 2001

Trout Example:

- The lengths of trout caught in a lake are normally distributed with mean $9.5^{\prime \prime}$ and standard deviation 1.4".
- There is a law that you can't keep any fish below 12". What percent of the trout is this?

Probability Distributions:

Standardization (cont.)

- Trout Example (continued)
- Step 1: Standardize
- Find the Z-score of 12: Prob ($x>12$)

$$
Z=\frac{x-\mu}{\sigma}=\frac{12-9.5}{1.4}=1.79
$$

- Step 2: Find Prob (Z>1.79)
- Look up 1.79 in Standard Normal table.
- Only .037, or about 4% of the fish could be kept.

Copyright Sharyn O'Halloran 2001

Probability Distributions:

Standardization (cont.)

- Trout Example (part 2):
- Now they're thinking of changing the standard to 10 " instead of 12"
- What proportion of fish could be kept under the new limit?

Probability Distributions:

Standardization (cont.)

- Trout Example (Part 2)
- Step 1: Standardize
- Find the Z-score of 10: Prob $(x>10)$

Probability Distributions:

Standardization (cont.)

- Salary Example
- Recall that SIPA grads make an average of $\$ 64.5 \mathrm{~K}$ per year, with a standard dev. of $\$ 2.5 \mathrm{~K}$

$$
Z=\frac{x-\mu}{\sigma}=\frac{10-9.5}{1.4}=0.36
$$

- Step 2: Find Prob ($Z>0.36$)
- Look up 0.36 in your table
- Now. 359, or almost 36% of the fish could be kept under the new law.

Copyright Sharyn O'Halloran 200
Let's solve the original problem: what percentage make between 68 K and 70 K ?

Probability Distributions:

Standardization (cont.)

- Salary Example

- Step 1: Standardize
- Find the Z-scores of 68 and 70:

$$
\begin{aligned}
& Z_{68}=\frac{x-\mu}{\sigma}=\frac{68-64.5}{2.5}=1.40 \\
& Z_{70}=\frac{x-\mu}{\sigma}=\frac{70-64.5}{2.5}=2.20
\end{aligned}
$$

- Step 2: Find Prob (1.40<Z<2.20)
- Look up 1.40 and 2.20 in your table;
- . 0808-. 0139 = . 067 , or 6.7% of grads make between $\$ 68 \mathrm{~K}$ and $\$ 70 \mathrm{~K}$ per year

Copyright Sharyn O'Halloran 2001

Joint Distributions

- Probability Tables
- Example: Toss a coin 3 times.
- How many heads and how many runs do we observe?

Def: A run is a sequence of one or more of the same event in a row

- Possible outcomes look like:

Copyright Sharyn O'Halloran 2001

Joint Distributions (cont.)
The joint probability of x and y is the probability that both x and y occur.

- $p(x, y)=\operatorname{Pr}(X$ and $Y)$
- Joint Distribution Table

Heads y $\mathbf{1}$ Runs $\mathbf{2}^{2}$

$p(0,1)=1 / 8$,

- $p(1,2)=1 / 4$,
$\mathrm{p}(3,3)=0$.
Copyright Sharyn O'Halloran 2001

Joint Distributions

Marginal Probabilities (cont.)

- Marginal probability
- The sum of the rows and columns.
- The overall probability of an event occurring.

$$
p(x)=\sum_{y} p(x, y) .
$$

- The probability of just 1 head is the probability of 1 head and 1 runs +1 head and 2 runs +1 head and 3 runs

$$
=0+1 / 4+1 / 8=3 / 8
$$

Joint Distributions (cont.)

- Independence
- A and B are independent if $P(A \mid B)=P(A)$.

$$
\begin{gathered}
\Rightarrow P(A \mid B)=\frac{P(A \& B)}{P(B)} ; \\
\Rightarrow P(A)=P(A \mid B), \\
\Rightarrow P(A, B)=P(A) P(B) .
\end{gathered}
$$

- The joint probability
- is the product of the marginal probabilities of 2 independent events

Copyright Sharyn O'Halloran 200

Joint Distributions (cont.)

- Are the number of heads and the number of runs independent?
- If so, the table would look like this:

\#Runs
y

\# heads
x

NO, because the \# of heads observed is related to the number of runs

Copyright Sharyn O'Halloran 2001

Correlation and Covariance

- Definition of Covariance
- The expected value of the product of the differences from the means.

$$
\sigma_{x, y}=E\left(X-\mu_{x}\right)\left(Y-\mu_{Y}\right)
$$

$$
\begin{aligned}
& \frac{\sum_{i=1}^{N}\left(X_{i}-\mu_{x}\right)\left(Y_{i}-\mu_{Y}\right)}{N} \\
= & \sum\left(X_{i}-\mu_{x}\right)\left(Y_{i}-\mu_{Y}\right) p(x, y) .
\end{aligned}
$$

Correlation \& Covariance (cont)

- Graph

Copyright Sharyn O'Halloran 2001

- Correlation \& Covariance
 (con't)

- Definition of Correlation

$$
\rho=\frac{\sigma_{x, y}}{\sigma_{x} \sigma_{y}}=\frac{\text { Covariance }}{\operatorname{SD}_{x} * D_{y}}
$$

- Characteristics of Correlation
- Why? $\quad-1 \leq \rho \leq 1$

$$
\begin{gathered}
\rho=\frac{\sigma_{x, y}}{\sigma_{x} \sigma_{y}}=\frac{\frac{\sum\left(\mathrm{x}_{\mathrm{i}}-\mu_{x}\right)\left(y_{i}-\mu_{y}\right)}{N}}{\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\mu_{x}\right)^{2}}{N}} \sqrt{\frac{\sum_{i=1}^{n}\left(y_{i}-\mu_{y}\right)^{2}}{N}}} \\
\text { Copyright Sharyn OHAlloran 2001 }
\end{gathered}
$$

