

	Decision Models Lecture 10 2					
Introduction to Yield Management						
	<i>Yield management</i> is the process of allocating different types of capacity to different customers at different prices in order to maximize revenue.					
0	Examples include Hotel industry How many rooms to allocate for each market segment (over time)?					
O	 Airline industry How many seats to allocate for each fare class? How to set fare classes and restrictions? 					
0	Other industries Cruise lines Railroads Car and truck rental Theater and concert ticketing Advertising networks					
0 0 0	In-class yield management examples: Retail Pricing: Quantity fixed, price over time to be decided (lecture 8) Ski Jacket: Price fixed, quantity to be decided AA Case					

	Decision Models Lecture 10 4				
Estimating Demand					
0	How do we estimate demand? One method (sometimes called the "Delphi" method) is to have a number of managers each estimate the product's demand based on their own judgment. Suppose twelve managers give the following demand estimates:				
	14,000 16,000				
	13,000 8,000				
	14,000 5,000				
	14,000 11,000				
	15,500 8,000				
	10,500 15,000				
	These forecasts have mean $m = 12,000$ and a standard deviation $s = 3,500$ (3,497 to be precise). The Delphi method uses numbers as the mean and standard deviation.				
0	What distribution for demand should we use in the simulation? Without further information about how well historical forecasts have done, we'll assume that demand is normally distributed. That is, we'll assume that $D \sim N(m = 12,000, s = 3,500).$ (~ = "is distributed as")				

Profit Formula					
0	The general formula is Profit = Revenue + Salvage value - Var cost - Fixed cost.				
0	To compute revenue, there are two cases to consider: $D < Q$ and $D \ge Q$. If $D < Q$ the revenue is $S * D$, if $D \ge Q$ the revenue is $S * Q$. This can be incorporated in a spreadsheet with the single formula Revenue = $S * IF(D < Q, D, Q)$.				
	If $D < Q$ the salvage value is $V * (Q - D)$; if $D \ge Q$ the salvage value is 0. This can be done in a spreadsheet with the formula Salvage value = $V * IF(D < Q, Q - D, 0)$. The variable cost is $C * Q$ and the fixed cost is F .				
0	The ski jacket production problem can be formulated as an optimization model:				
	$\max_{o} E[Profit(Q,D)],$				
	i.e., find the Q among 6000, 8000,, 14000, etc., which maximizes expected profit.				

	500 trials	10,000) trials	
Quantity (Q)	Avg. Profit	Avg. Profit	Std Dev	
6,000	15,945	15,744	27,606	
8,000	46,228	44,789	54,799	
10,000	58,936	57,056	94,940	
12,000	45,729	42,743	142,503	
14,000	3,645	-2,684	186,741	
With 10,000 Q = 10,000	Q* = $10,000$. 0 trials the 95% cc is: 57,056 ± 1.960	onfidence interval fc (949),	or the average pro	o be
ie the 95%	% confidence inter	rval based on n = 10	0,000 trials is	

	Decision Models Lecture 10 23
	For next class
О	Read "Identifying, Measuring, and Hedging Currency Risk at Merck," "Merck's 1995 Annual Report," and "Managing Risk" in the readings book.
0	At this point we have covered enough material on simulation for you to begin the "Yield Management at American Airlines" case. The case is due March 1st (at the start of the final exam).