

	Decision Models Lecture 7 2
0	In the GMS investment case, we include the possibility of investing in options, specifically put options.
0	Consider a put option on IBM stock. We briefly explain here its characteristics and payoff formula.
0	A one-month put option on IBM is an option to sell one share of IBM stock at a fixed dollar price (the <i>strike</i> price) in one month.
0	An option is defined by several factors: Factor Our option Underlying IBM stock price (\$) Expiration 1 month Strike (K) \$150 Type Put Cost \$25
0	What is the payoff of this put option if IBM is at \$130 in one month? \$120? \$170?

Stock Price	\$190	_ \$180	\$160	\$130	\$110
Stock Return	31.0%	24.1%	10.3%	-10.3%	-24.1%
Put Option Payoff	\$0	\$0	\$0	\$20	\$40
Put Option Return	-100%	-100%	-100%	-20%	+60%

	GMS Stock Hedging											
	Table 1. Scenarios and Probabilities for GMS Stock in One Month											
F	Scenario 1 Probability 0.05 GMS Price 150						6 0.10 80	7 0.05 70				
	Gives Price 150 130 110 100 90 80 70 Table 2. Put Option Prices (Today)											
	Put optionABCStrike price90100110Option price\$2 20\$6 40\$12 50											
ৃ Today, GM	 Today, GMS is \$100 per share. 											
 Problem: portfolio th 	 Problem: What is the minimum risk (i.e., minimum standard deviation) portfolio that invests all \$10 million in stock and options? 											

			Scena	ari	o Retu	rn	s (cont	in	ued)	Decision Models Lecture 7 9
6	E		F		G		H Option R		I Option C	
7	Initial Price	¢	100	¢	2 20	¢	Орион в 6 40	¢	12 50	
8	Ontion strike price	Ψ	100	Ψ \$	2.20	Ψ ¢	100	Ψ ¢	12.00	
9	option strike price			Ψ	50	Ψ	100	Ψ	110	
10	Final Prices		GMS		Option A		Option B		Option C	
11	Scenario 1	\$	150	\$	-	\$	-	\$	-	
12	2	\$	130	\$	-	\$	-	\$	-	
13	3	\$	110	\$	-	\$	-	\$	-	
14	4	\$	100	\$	-	\$	-	\$	10	
15	5	\$	90	\$	-	\$	10	\$	20	=MAX(I\$8-\$F17,0)
16	6	\$	80	\$	10	\$	20	\$	30	(copied to G11:I17)
17	7	\$	70	\$	20	\$	30	\$	40	¢
18										
19	Returns (in %)		GMS		Option A		Option B		Option C	
20	Scenario 1		50.0		-100.0		-100.0		-100.0	
21	2		30.0		-100.0		-100.0		-100.0	
22	3		10.0		-100.0		-100.0		-100.0	
23	4		0.0		-100.0		-100.0		-20.0	
24	5		-10.0		-100.0		56.3		60.0	
25	6		-20.0		354.5		212.5		140.0	
26	7		-30.0		809.1		368.8		220.0	
										─=100*(I17-I\$7)/I\$7
										(copied to F20:I26)

Adjusting the model to handle scenarios with unequalprobabilities: calculating the average portfolio return

О	So far our portfolio-optimization scenarios. In order to be able we must change the way we can portfolio's standard deviation. are <i>m</i> scenarios)	n model has always as to model scenarios wit alculate the average po The calculations are a	sumed equal probability h unequal probabilities, ortfolio return and the s follows: (recall there						
		Equal Probabilities	Unequal Probabilities						
	Average Portfolio Return	$r_p = \sum_{i=1}^m \frac{1}{m} r_i$	$r_p = \sum_{i=1}^m p_i r_i$						
0	To illustrate let's take the portf	olio that is made up of	100% GMS Stock.						
О	The returns by scenario are:								
	▶ r ₁ =50%, r ₂ =30%, r ₃ =10%	%, $r_4 = 0\%$, $r_5 = -10\%$,	$r_6 = -20\%, r_7 = -30\%.$						
О	Since the probabilities by scen	ario are $p_1 = 5\%$, $p_2 = 10\%$	%, <i>p₇=</i> 5%, we have:						
	$r_P = 0.05 r_1 + 0.10 r_2 + 0.20$	$r_3 + 0.30 r_4 + 0.20 r_5 + 0.00 r_5 + 0.0$	0.10 r ₆ + 0.05 r ₇						
	or								
	$r_P = 0.05(50\%) + 0.10(30\%)$ $0.10(-20\%) r_6 +$	+ 0.20(10%) + 0.30(0%) 0.05(-30%) = 2.0% .	%) + 0.20(–10%) +						
0	In Excel we'll use the =SUMPF	RODUCT() function.							

 Again, let's c When scena 	onsider a simpl rio returns are r	le portfolio mad	e up of only G	iMS stock. standard
deviation is o	calculated as fo	llows. First we	calculate the	average return
(as explained	d above) r _P =2%	ó:		
(1)	(2)	(3)	(4)	
Portfolio	Deviation	Squared	Proba-	
return	$(r_i - r_p)$	$(r_i - r_p)^2$	Dinty	
$r_1 = 50.0$	+ 48.0	2304.0	0.05	
$r_2 = 30.0$	+ 28.0	784.0	0.10	
$r_3 = 10.0$	+ 8.0	64.0	0.20	
$r_4 = 0.0$	- 2.0	4.0	0.30	
$r_5 = -10.0$	- 12.0	144.0	0.20	
$r_6 = -20.0$	- 22.0	484.0	0.10	
$r_7 = -30.0$	- 32.0	1024.0	0.05	
Using colum	ns (3) and (4), v	we calculate firs	t the variance	:
	m			
$VAR_{n} = $	$\sum_{i} p_i (r_i - r_p)^2$			
p i				

	Α	В	C	D	Е		F	G		Н		Ι	J	K
1	GOLD.>	(LS		Investme	nt Non-Linear Prog	jran	n							
2							GMS	Option A	0	Option B		Option C		Sum of Weight
3	F	Portfolio Ret	urn	Stnd. Dev.	Portfolio Weights		83.0%	-0.1%		-6.6%		23.8%		1009
4	L	1.651		7.18	Number of units		82,972	(3,796)	(1	03,844)		190,057		
5														1009
6							GMS	Option A	C	Option B		Option C		
7					Initial Price	\$	100	\$ 2.20	\$	6.40	\$	12.50		
8					Option strike price			\$ 90	\$	100	\$	110		
9														
10					Final Prices	_	GMS	Option A	0	Option B		Option C		
11					Scenario 1	\$	150	\$ -	\$	-	\$	•		
12					2	\$	130	\$ -	\$	-	\$	•		
13					3	\$	110	\$ -	\$	-	\$	-		
14					4	\$	100	\$ -	\$	-	\$	10		
15					5	\$	90	\$ -	\$	10	\$	20		
16			Dortfolio		6	\$	80	\$ 10	\$	20	\$	30		
1/	0	Decks	Portiolio	0	1	\$	70	\$ 20	\$	30	Þ	40		
10	Scen-	Proba-	Ret. by	Squared	Security		0140	0				0-4 0		
19	ario	Dilities	Scenario	Deviation	Returns (In %)	_	GIVIS	100 A		100 0		100 0		
20	2	0% 109/	24.40	20.17	Scenario i		20.0	100.0		100.0		100.0		
22	2	20%	0 72	107 70	2		10.0	100.0		100.0		100.0		
22	4	20 %	1 98	0.11	3		0.0	-100.0		-100.0		-20.0		
24	5	20%	2 30	0.42	- 5		-10.0	-100.0		56.3		60.0		
25	6	10%	2.00	0.42	6		-20.0	354.5		212.5		140.0		
26	7	5%	2.19	0.29	7		-30.0	809.1		368.8		220.0		

		Comp	arison c	of Alterr	ative So	olutions	Decision Models	Lecture 7 19
Portfoli Portfoli put Portfoli put Portfoli -6.6	io 1: <i>(all</i> io 2: (eq option A io 3: <i>(op</i> option C io 4: <i>(op</i> 5% in put	in stock) ual numb (97,847 timal solu timal solu B, and 2	100% in per of stoo shares an ution with ution with 3.8% in p	gold stoc ck and op nd 97,847 no short short sal put option	k <i>stion A)</i> 9 options) sales) 84 es) 83.0% C	7.8% in s .9% in sto 6 in stock	tock, 2.2% ock, 15.1% , -0.1% in	% in % in put A,
		Sce	nario Retu	rns for Dif	ferent Port	folios		
Scenari	o 1	2	3	4	5	6	7	
Prob.	5%	10%	20%	30%	20%	10%	5%	
Port 1	50.0	30.0	10.0	0.0	-10.0	-20.0	-30.0	
Port 2	46.8	27.2	7.6	-2.2	-11.9	-11.9	-11.9	
Port 3	27.4	13.4	-6.6	-3.0	0.6	4.1	7.7	
Port 4	24.5	7.9	-8.7	2.0	2.3	2.3	2.2	
0 Pc 0 Pc 0 Pc 0 Pc	ortfolio 1: ortfolio 2: ortfolio 3: ortfolio 4:	avg ret = avg ret = avg ret = avg ret =	= 2.00%, = 1.76%, = 1.10%, = 1.65%,	std = 18. std = 15. std = 8. std = 7.	3% 6% 0% 2%			

	GMS Hedging Summary
0	 Portfolio 1: Investment in GMS stock alone This investment is quite risky. STD = 18.3%, maximum potential loss of 30%.
0	Portfolio 2: Hedging each share of stock with one put-option AReduces risk only slightly.
0	Portfolio 3: Minimum-variance solution with nonnegative portfolio weights Reduces risk significantly.
0	 Portfolio 4: Minimum variance solution with negative portfolio weights allowed Reduces risk and increases average return as compared to portfolio 3. Has less than half the risk (as measured by <i>SD</i>) of Portfolio 2.

	Other Applications
	This portfolio-optimization model is one example of a <i>scenario LP</i> or <i>stochastic LP</i> . Similar models have been developed for:
О	Bond-portfolio selection
	scenarios are future yield-curve changes
	 SEC now regulates S&L's based on minimum capital requirements based on a range of future yield-curve scenarios (typically parallel yield-curve shifts)
0	Corporate risk management
	scenarios represent corporate risk factors
	A model similar to the GMS case was developed by Cort Gwon (Columbia MBA '95):
0	LibertyView Capital Management
0	Invests in undervalued high yield (junk) bonds
0	Spreadsheet optimization model is now used to hedge bond investments using stock and options
	Scenarios developed by the traders

0	 Production and Distribution Garment design Creative process, most important phase Basic silhouettes, colors, and fabrics chosen Typically begins <i>one year in advance</i> of the target selling season
0	 Production quantity decision, material procurement Based on rough forecasts of likely sales Vagaries of fashion and long lead times often result in highly inaccurate forecasts Procurement lead time: 1-2 weeks for standard in-stock fabrics to several months for special-order fabrics
0	 Garment assembly In-house or through subcontractors Lead time: under 4 weeks (in-house) to several months (e.g., overseas subcontractor)
0	 Distribution Takes 1-2 weeks (domestic supplier) to 4-6 weeks (e.g., overseas supplier using container ships for transportation)

Fi The GAP - ((\$ Millions) Net Sales Cost of Goods Sold S,G&A Interest Expense Pretax Income Taxes Net Income	nancial Implications Operating Statement Inform 1991 \$ 2,518.0 1,568.0 575.7 3.5 370.8 140.9 229.9	Decision Models Lecture 7 26 1992 \$2,960.0 1,955.6 661.3 3.8 339.8 129.1 210.7
EPS Shares Out (mil) Sales % Change Comp-Stores	\$1.62 142.0 30.3% 13.0	\$1.47 143.7 17.7% 5.0
 % OF SALES Cost of Goods Sold S,G&A Interest Expense Pretax Income Tax Rate ○ Suppose a better marke in 1992: ⇒ \$59 million increase ⇒ No change in cost of ⇒ 17% increase in pre ⇒ 17% increase in ea Relatively small change a company's bottom lin 	62.3% 22.9 0.1 14.7 38.0 down strategy produced a 2 e in sales of goods sold etax income and net income rnings per share es in revenue can have a su e.	66.1% 22.3 0.1 11.5 38.0 2% revenue increase

ſ	Α	A	в	с	D	E	F	Decision Models	Lecture 7	30
	1 8	RETAILxls								
	2									
-	3	H	istorical sale	s data for 15	5 different ite	ems				
-	5	10	r use with th	RETAILER	c simulation (game.				
	6			Qty on						
	7	Item	Week	hand	Price	Sales				
	8	1	1	2000	60	57				
-	9		2	1943	60	98				
-	10		3	1845	60	55				
-	12		5	1749	60	60				
	13		6	1689	60	39				
	14		7	1650	54	106				
	15		8	1544	54	55				
-	16		9	1489	54	64				
l	1/		10	1425	54	43				
	10		11	1382	54	131				
	20		13	1139	54	62				
	21		14	1077	54	31				
	22		15	1046	54	80				
	23		16	966						
-	24			0000		445				
-	25	2	2	2000	60	105				
-	27		3	1780	60	136				
	28		4	1644	60	115				
	29		5	1529	60	73				
	30		6	1456	60	102				
-	31		7	1354	54	58				
	32		å	1296	54	107				
-	34		10	911	54	196				
	35		11	715	54	132				
	36		12	583	54	60				
	37		13	523	54	119				
	38		14	404	54	131				
l	39		15	273	54	215				
	41		10	50						
	42	3	1	2000	60	75				
	43	-	2	1925	60	82				
	44		3	1843	60	63				
	45		4	1780	60	53				
-	46		5	1727	60	63				
	48		7	1644	54	20				
	49		8	1587	54	118				
	50		9	1469	54	90				
	51		10	1379	54	51				
	52		11	1328	54	126				
	53		12	1202	54	73				
	55		14	1041	54	64				
l ł	56		15	977	54	74				
	57		16	903						

Week	Qty on hand	Price	Sales	Rev	Cum Rev	Avg Sales	Std Err	Proj Sales
1 2	2000 1901	60	99	5940	5940	99	-	1485
RevCun	The rev Rev n Rev: T	venue for = Price × otal (or c	the curre Sales . umulative	ent week, e) revenu	i.e., e since th	ne beginni	ng of the	e selling
o Avg	Sales: T	he avera	age of we	ekly sale	s at the c	urrent prie	ce.	
ວ Std dev	Err: Star	ndard erre and <i>n</i> is t	or of the a	average s er of wee	sales, i.e. ks of sale	, s/\sqrt{n} where s (at the	here <i>s</i> is current j	the std price).
o Proj usin	Sales: F	Projected tive sale	total sale s thus far	es after 1 plus sale	5 weeks. es contini	The projuing at the	ection is e current	made

w	eek	Qty on hand	Price	Sales	Rev	Cum Rev	Avg Sales	Std Err	Proj Sale
	1	2000	60	99	5940	5940	99	-	1485
	2	1901	60	53	3180	9120	76	23	1140
	3	1848							
	Cun	n Rev: \$	9120 = 5 76 - (99 -	940 + 318 • 53)/2	30.				
	Cun Avg	n Rev: \$ Sales: 7	9120 = 5 76 = (99 -	940 + 318 + 53)/2.	30.				
	Cun Avg Std Proj	n Rev: \$ Sales: 7 Err: 23 = Sales: (9120 = 5 76 = (99 - = $s / \sqrt{2}$, Current to	940 + 318 ⊦ 53)/2. where s : otal sales	30. = 32.5. + future	sales at a	iverage ra	ate:	
	Cun Avg Std Proj 1	n Rev: \$ Sales: 7 Err: 23 = Sales: (140 = (9	9120 = 5 76 = (99 - = $s /\sqrt{2}$, Current to 9 + 53) +	940 + 318 ⊦ 53)/2. where s : ptal sales 13 × 76 .	30. = 32.5. + future	sales at a	iverage ra	ate:	

Qty or	n			Cum	Avg	Std	Proj	
Week	hand	Price	Sales	Rev	Rev	Sales	Err	Sale
1	2000	60	99	5940	5940	99	-	148
2	1901	60	53	3180	9120	76	23	114
3	1848	54	85	4590	13710	85	-	125
4	1763							
prio Pro	ce of \$54. oj Sales: (1257 = (9	Current to 9 + 53 + 8	otal sales 85) + 12×	+ future 85 .	sales at a	verage ra	ate:	
• At \$30	this point, 6.	the user	can choo	se from o	only 3 pric	e levels:	\$54, \$48	8, and
At	the end of	15 week	s, revenu	le from s	ales will b	e added	to reven	ue fror

