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Algebraic Expressions

Variables
ÿ Letters represent an unknown or generic real

number
ÿ Sometimes with restrictions, such as a member

of a certain set, or the set of values that makes an
equation true.

ÿ Often a letter from the end of the alphabet: x, y, z
ÿ Or a letter that stands for a physical quantity: d

for distance, t for time, etc.

Constants
ÿ Fixed values, like 2 or 7
ÿ Can also be represented by letters: a, b, c, p, e, k

Terms
Terms are Separated by + or –

Factors
Factors are multiplied together.

Coefficients
Coefficients are constant factors that multiply a
variable or powers of a variable

The middle term has 2 factors, –3 and x. We say that
the coefficient of x is –3.

The first term has three factors, 2 and two factors of
x. We say that 2 is the coefficient of x2.

The last term is a factor all by itself (although the
number 4 could be factored into 2 x 2).

Simplifying Algebraic Expressions

By “simplifying” an algebraic expression, we mean
writing it in the most compact or efficient manner,
without changing the value of the expression. This
mainly involves collecting like terms, which means
that we add together anything that can be added
together. The rule here is that only like terms can be
added together.

Like (or similar) terms
Like terms are those terms which contain the same
powers of same variables. They can have different
coefficients, but that is the only difference.

Examples: 

3x, x, and –2x are like terms.

2x2, –5x2, and are like terms.

xy2, 3y2 x, and 3xy2 are like terms.

xy2 and x2 y are NOT like terms, because the same
variable is not raised to the same power.

Combining Like terms
Combining like terms is permitted because of the
distributive law. For example,

3x2 + 5x2 = (3 + 5)x2 = 8x2

What happened here is that the distributive law was
used in reverse—we “undistributed” a common
factor of x2 from each term. The way to think about
this operation is that if you have three x-squareds,
and then you get five more x-squareds, you will then
have eight x-squareds.

Example:  x2 + 2x + 3x2 + 2 + 4x + 7

Starting with the highest power of x, we see that
there are four x-squareds in all (1x2 + 3x2). Then we
collect the first powers of x, and see that there are six
of them (2x + 4x). The only thing left is the constants
2 + 7 = 9. Putting this all together we get

x2 + 2x + 3x2 + 2 + 4x + 7
=

4x2 + 6x + 9
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Parentheses
• Parentheses must be multiplied out before

collecting like terms
You cannot combine things in parentheses (or other
grouping symbols) with things outside the
parentheses. Think of parentheses as opaque—the
stuff inside the parentheses can’t “see” the stuff
outside the parentheses. If there is some factor
multiplying the parentheses, then the only way to get
rid of the parentheses is to multiply using the
distributive law.

Example: 
3x + 2(x – 4) = 3x + 2x – 8

= 5x – 8

Minus Signs: Subtraction and Negatives

Subtraction can be replaced by adding the opposite
3x – 2 = 3x + (–2)

Negative signs in front of parentheses
A special case is when a minus sign appears in front
of parentheses. At first glance, it looks as though
there is no factor multiplying the parentheses, and
you may be tempted to just remove the parentheses.
What you need to remember is that the minus sign
indicating subtraction should always be thought of as
adding the opposite. This means that you want to add
the opposite of the entire thing inside the
parentheses, and so you have to change the sign of
each term in the parentheses. Another way of looking
at it is to imagine an implied factor of one in front of
the parentheses. Then the minus sign makes that
factor into a negative one, which can be multiplied
by the distributive law:

3x – (2 – x)

= 3x + (–1)[2 + (–x)]

= 3x + (–1)(2) + (–1)(–x)

= 3x – 2 + x

= 4x – 2

However, if there is only a plus sign in front of the
parentheses, then you can simply erase the
parentheses:

3x + (2 – x)

= 3x + 2 – x

A comment about subtraction and minus signs
Although you can always explicitly replace
subtraction with adding the opposite, as in this
previous example, it is often tedious and
inconvenient to do so. Once you get used to thinking
that way, it is no longer necessary to actually write it
that way. It is helpful to always think of minus signs
as being “stuck” to the term directly to their right.
That way, as you rearrange terms, collect like terms,
and clear parentheses, the “adding the opposite”
business will be taken care of because the minus
signs will go with whatever was to their right. If what
is immediately to the right of a minus sign happens
to be a parenthesis, and then the minus sign attacks
every term inside the parentheses.
 

Solutions of Algebraic Equations

Up until now, we have just been talking about
manipulating algebraic expressions. Now it is time to
talk about equations. An expression is just a
statement like

2x + 3

This expression might be equal to any number,
depending on the choice of x. For example, if x = 3
then the value of this expression is 9. But if we are
writing an equation, then we are making a statement
about its value. We might say

2x + 3 = 7

A mathematical equation is either true or false. This
equation, 2x + 3 = 7, might be true or it might be
false; it depends on the value chosen for x. We call
such equations conditional, because their truth
depends on choosing the correct value for x. If I
choose x = 3, then the equation is clearly false
because 2(3) + 3 = 9, not 7. In fact, it is only true if I
choose x = 2. Any other value for x produces a false
equation. We say that x = 2 is the solution of this
equation.

Solutions
ÿ The solution of an equation is the value(s) of the

variable(s) that make the equation a true
statement.

An equation like 2x + 3 = 7 is a simple type called a
linear equation in one variable. These will always
have one solution, no solutions, or an infinite number
of solutions. There are other types of equations,
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however, that can have several solutions. For
example, the equation

x2 = 9

is satisfied by both 3 and –3, and so it has two
solutions.

One Solution
This is the normal case, as in our example where the
equation 2x + 3 = 7 had exactly one solution, namely
x = 2. The other two cases, no solution and an infinite
number of solutions, are the oddball cases that you
don’t expect to run into very often. Nevertheless, it is
important to know that they can happen in case you
do encounter one of these situations.

Infinite Number of Solutions
Consider the equation

x = x

This equation is obviously true for every possible
value of x. This is, of course, a ridiculously simple
example, but it makes the point. Equations that have
this property are called identities. Some examples of
identities would be

2x = x + x

3 = 3

(x – 2)(x + 2) = x2 – 4

 All of these equations are true for any value of x.
The second example, 3 = 3, is interesting because it
does not even contain an x, so obviously its
truthfulness cannot depend on the value of x! When
you are attempting to solve an equation algebraically
and you end up with an obvious identity (like 3 = 3),
then you know that the original equation must also be
an identity, and therefore it has an infinite number of
solutions.

No Solutions
Now consider the equation

x + 4 = x + 3

There is no possible value for x that could make this
true. If you take a number and add 4 to it, it will
never be the same as if you take the same number
and add 3 to it. Such an equation is called a
contradiction, because it cannot ever be true.

If you are attempting to solve such an equation, you
will end up with an extremely obvious contradiction

such as 1 = 2. This indicates that the original
equation is a contradiction, and has no solution.

 In summary,

ÿ An identity is always true, no matter what x is
ÿ A contradiction is never true for any value of x
ÿ A conditional equation is true for some values of

x

Addition Principle

Equivalent Equations
The basic approach to finding the solution to
equations is to change the equation into simpler
equations, but in such a way that the solution set of
the new equation is the same as the solution set of the
original equation. When two equations have the same
solution set, we say that they are equivalent.

What we want to do when we solve an equation is to
produce an equivalent equation that tells us the
solution directly. Going back to our previous
example,

2x + 3 = 7

we can say that the equation

x = 2

is an equivalent equation, because they both have the
same solution, namely x = 2. We need to have some
way to convert an equation like 2x + 3 = 7 into an
equivalent equation like x = 2 that tells us the
solution. We solve equations by using methods that
rearrange the equation in a manner that does not
change the solution set, with a goal of getting the
variable by itself on one side of the equal sign. Then
the solution is just the number that appears on the
other side of the equal sign.

The methods of changing an equation without
changing its solution set are based on the idea that if
you change both sides of an equation in the same
way, then the equality is preserved. Think of an
equation as a balance—whatever complicated
expression might appear on either side of the
equation, they are really just numbers. The equal sign
is just saying that the value of the expression on the
left side is the same number as the value on the right
side. Therefore, no matter how horrible the equation
may seem, it is really just saying something like
3 = 3.
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The Addition Principle
Adding (or subtracting) the same number to both
sides of an equation does not change its solution set.

Think of the balance analogy—if both sides of the
equation are equal, then increasing both sides by the
same amount will change the value of each side, but
they will still be equal. For example, if

3 = 3,

then

3 + 2 = 3 + 2.

 Consequently, if

6 + x = 8

 for some value of x (which in this case is x = 2), then
we can add any number to both sides of the equation
and x = 2 will still be the solution. If we wanted to,
we could add a 3 to both sides of the equation,
producing the equation

9 + x = 11.

 As you can see, x = 2 is still the solution. Of course,
this new equation is no simpler than the one we
started with, and this maneuver did not help us solve
the equation.
If we want to solve the equation

6 + x = 8,

 the idea is to get x by itself on one side, and so we
want to get rid of the 6 that is on the left side. We can
do this by subtracting a 6 from both sides of the
equation (which of course can be thought of as
adding a negative six):

6 – 6 + x = 8 – 6

or

x = 2

 You can think of this operation as moving the 6
from one side of the equation to the other, which
causes it to change sign
 
The addition principle is useful in solving equations
because it allows us to move whole terms from one
side of the equal sign to the other. While this is a
convenient way to think of it, you should remember
that you are not really “moving” the term from one
side to the other—you are really adding (or
subtracting) the term on both sides of the equation.

Notations
In the previous example, we wrote the –6 in-line with
the rest of the equation. This is analogous to writing
an arithmetic subtraction problem in one line, as in

234 – 56 = 178.

 You probably also learned to write subtraction and
addition problems in a column format, like

We can also use a similar notation for the addition
method with algebraic equations.
Given the equation

x + 3 = 2,

we want to subtract a 3 from both sides in order to
isolate the variable. In column format this would
look like

Here the numbers in the second row are negative 3’s,
so we are adding the two rows together to produce
the bottom row.

The advantage of the column notation is that it makes
the operation easier to see and reduces the chances
for an error. The disadvantage is that it takes more
space, but that is a relatively minor disadvantage.
Which notation you prefer to use is not important, as
long as you can follow what you are doing and it
makes sense to you.

Multiplication Principle

Multiplying (or dividing) the same non-zero number
to both sides of an equation does not change its
solution set.

Example:

so if 6x = 12, then 18x = 36 for the same value of x
(which in this case is x = 2).

The way we use the multiplication principle to solve
equations is that it allows us to isolate the variable by
getting rid of a factor that is multiplying the variable.
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Example:  2x = 6

To get rid of the 2 that is multiplying the x, we can
divide both sides of the equation by 2, or multiply by
its reciprocal (one-half).
Either divide both sides by 2:

or multiply both sides by a half:

• Whether you prefer to think of it as dividing by
the number or multiplying by its reciprocal is not
important, although when the coefficient is a
fraction it is easier to multiply by the reciprocal: 

Example: 4/5x = 8

Multiply both sides by the reciprocal of the
coefficient, or 5/4

 
Using the Principles Together

Suppose you were given an equation like

2x – 3 = 5.
 
You will need to use the addition principle to move
the –3, and the multiplication principle to remove the
coefficient 2. Which one should you use first?
Strictly speaking, it does not matter—you will
eventually get the right answer. In practice, however,
it is usually simpler to use the addition principle first,
and then the multiplication principle. The reason for
this is that if we divide by 2 first we will turn
everything into fractions:

Given: 2x – 3 = 5

Suppose we first divide both sides by 2:

Now there is nothing wrong with doing arithmetic
with fractions, but it is not as simple as working with
whole numbers. In this example we would have to
add 3/2 to both sides of the equation to isolate the x.
It is usually more convenient, though, to use the
addition principle first:

Given: 2x – 3 = 5

Add 3 to both sides:

  At this point all we need to do is divide both sides
by 2 to get x = 4.
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Word Problems

Problem Solving Strategies

Understand
1. Read the problem carefully.
2. Make sure you understand the situation that is

described.
3. Make sure you understand what information is

provided, and what the question is asking.
4. For many problems, drawing a clearly labeled

picture is very helpful.

Plan
1. First focus on the objective. What do you need to

know in order to answer the question?
2. Then look at the given information. How can you

use that information to get what you need to
know to answer the question?

3. If you do not see a clear logical path leading
from the given information to the solution, just
try something. Look at the given information and
think about what you can find from it, even if it
is not what the question is asking for. Often you
will find another piece of information that you
can then use to answer the question.

Write equations
You need to express mathematically the logical
connections between the given information and the
answer you are seeking. This involves:

1. Assigning variable names to the unknown
quantities. The letter x is always popular, but it is
a good idea to use something that reminds you
what it represents, such as d for distance or t for
time. The trickiest part of assigning variables is
that you want to use a minimum number of
different variables (just one if possible). If you
know how two quantities are related, then you
can express them both with just one variable. For
example, if Jim is two years older than John is,
you might let x stand for John’s age and (x + 2)
stand for Jim’s age.

2. Translate English into Math. Mathematics is a
language, one that is particularly well suited to
describing logical relationships. English, on the
other hand, is much less precise.

Solve
Now you just have to solve the equation(s) for the
unknown(s). Remember to answer the question that
the problem asks.

Check!
Think about your answer. Does your answer come
out in the correct units? Is it reasonable? If you made
a mistake somewhere, chances are your answer will
not just be a little bit off, but will be completely
ridiculous

General Word Problems

General Strategy
Recall the general strategy for setting up word
problems. Refer to the Problem Solving Strategies
page for more detail.
1. Read the problem carefully: Determine what is

known, what is unknown, and what question is
being asked.

2. Represent unknown quantities in terms of a
variable.

3. Use diagrams where appropriate.
4. Find formulas or mathematical relationships

between the knowns and the unknowns.
5. Solve the equations for the unknowns.
6. Check answers to see if they are reasonable.

Number Problems
Example:  Find a number such that 5 more than one-
half the number is three times the number.
Let x be the unknown number.

Translating into math: 5 + x/2 = 3x

Solving:
(First multiply by 2 to clear the fraction)

5 + x/2 = 3x

10 + x = 6x

10 = 5x

x = 2

Geometry Problems
Example:  If the perimeter of a rectangle is 10
inches, and one side is one inch longer than the other,
how long are the sides?
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Let one side be x and the other side be x + 1.

Then the given condition may be expressed as

x + x + (x + 1) + (x + 1) = 10

Solving:
4x + 2 = 10

4x = 8
x = 2

so the sides have length 2 and 3.

Rate-Time Problems

Rate = Quantity/Time

or

Quantity = Rate x Time

Example 1:  A fast employee can assemble 7 radios
in an hour, and another slower employee can only
assemble 5 radios per hour. If both employees work
together, how long will it take to assemble 26 radios?

The two together will build 7 + 5 = 12 radios in an
hour, so their combined rate is 12 radios/hr.

Using Time = Quantity/Rate, Time = 26/12 = 2 1/6 h

or

2 hours 10 minutes

Example 2:  you are driving along at 55 mph when
you are passed by a car doing 85 mph. How long will
it take for the car that passed you to be one mile
ahead of you?

We know the two rates, and we know that the
difference between the two distances traveled will be
one mile, but we don’t know the actual distances. Let
D be the distance that you travel in time t, and D + 1
be the distance that the other car traveled in time t.

Using the rate equation in the form
distance = speed • time for each car we can write

D = 55 t, and D + 1 = 85 t

Substituting the first equation into the second,

55t + 1 = 85t

-30t = -1

t = 1/30 hr(or 2 minutes)

Mixture Problems
Example:  How much of a 10% vinegar solution
should be added to 2 cups of a 30% vinegar solution
to make a 20% solution?

Let x be the unknown volume of 10% solution. Write
an equation for the volume of vinegar in each
mixture:

(amount of vinegar in first solution) + (amount of
vinegar in second solution) = (amount of vinegar in
total solution)

0.1x + 0.3(2) = 0.2(x + 2)

0.1x + 0.6 = 0.2x + 0.4

-0.1x = -0.2

x = 2 cups
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Graphing and straight Lines

A. Rectangular Coordinates

The rectangular coordinate system is also known as
the Cartesian coordinate system after Rene
Descartes, who popularized its use in analytic
geometry. The rectangular coordinate system is
based on a grid, and every point on the plane can be
identified by unique x and y coordinates, just as any
point on the Earth can be identified by giving its
latitude and longitude.

Axes
Locations on the grid are measured relative to a fixed
point, called the origin, and are measured according
to the distance along a pair of axes. The x and y axes
are just like the number line, with positive distances
to the right and negative to the left in the case of the

x axis, and positive distances measured upwards and
negative down for the y axis. Any displacement away
from the origin can be constructed by moving a
specified distance in the x direction and then another
distance in the y direction. Think of it as if you were
giving directions to someone by saying something
like “go three blocks East and then 2 blocks North.”

Coordinates, Graphing Points

We specify the location of a point by first giving its x
coordinate (the left or right displacement from the
origin), and then the y coordinate (the up or down
displacement from the origin). Thus, every point on
the plane can be identified by a pair of numbers
(x, y), called its coordinates.

Examples: 
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Quadrants
Sometimes we just want to know what general part
of the graph we are talking about. The axes naturally
divide the plane up into quarters. We call these
quadrants, and number them from one to four.
Notice that the numbering begins in the upper right
quadrant and continues around in the counter-
clockwise direction. Notice also that each quadrant
can be identified by the unique combination of
positive and negative signs for the coordinates of a
point in that quadrant.

B. Graphing Functions

Consider an equation such as

y = 2x – 1

We say that y is a function of x because if you choose
any value for x, this formula will give you a unique
value of y. For example, if we choose x = 3 then the
formula gives us

y = 2(3) – 1

or

y = 5

Thus we can say that the value y = 5 is generated by
the choice of x = 3. Had we chosen a different value
for x, we would have gotten a different value for y. In
fact, we can choose a whole bunch of different
values for x and get a y value for each one. This is
best shown in a table:

x (input) x – Formula - y y (output)
–2 2(–2) – 1 = –5 –5
–1 2(–1) – 1 = –3 –3
0 2(0) – 1 = –1 –1
1 2(1) – 1 = 1 1
2 2(2) – 1 = 3 3
3 2(3) – 1 = 5 5

This relationship between x and its corresponding y
values, produces a collection of pairs of points (x, y),
namely

(–2, –5)
(–1, –3)
(0, –1)
(1, 1)
(2, 3)
(3, 5)

Since each of these pairs of numbers can be the
coordinates of a point on the plane, it is natural to ask
what this collection of ordered pairs would look like
if we graphed them. The result is something like this:

The points seem to fall in a straight line. Now, our
choices for x were quite arbitrary. We could just as
well have picked other values, including non-integer
values. Suppose we picked many more values for x,
like 2.7, 3.14, etc. and added them to our graph.
Eventually the points would be so crowded together
that they would form a solid line:

The arrows on the ends of the line indicate that it
goes on forever, because there is no limit to what
numbers we could choose for x. We say that this line
is the graph of the function y = 2x – 1.

If you pick any point on this line and read off its x
and y coordinates, they will satisfy the equation
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y = 2x – 1. For example, the point (1.5, 2) is on the
line:

and the coordinates x = 1.5, y = 2 satisfy the equation
y = 2x – 1:

2 = 2(1.5) – 1

Note: This graph turned out to be a straight line only
because of the particular function that we used as an
example. There are many other functions whose
graphs turn out to be various curves.

C. Straight Lines

Linear Equations in Two Variables
The equation y = 2x – 1 that we used as an example
for graphing functions produced a graph that was a
straight line. This was no accident. This equation is
one example of a general class of equations that we
call linear equations in two variables. The two
variables are usually (but of course don’t have to be)
x and y. The equations are called linear because their
graphs are straight lines. Linear equations are easy to
recognize because they obey the following rules:

1. The variables (usually x and y) appear only to the
first power

2. The variables may be multiplied only by real
number constants

3. Any real number term may be added (or
subtracted, of course)

4. Nothing else is permitted!

* This means that any equation containing things like
x2, y2, 1/x, xy, square roots, or any other function of x
or y is not linear.

Describing Lines
Just as there are an infinite number of equations that
satisfy the above conditions, there are also an infinite
number of straight lines that we can draw on a graph.
To describe a particular line we need to specify two

distinct pieces of information concerning that line. A
specific straight line can be determined by specifying
two distinct points that the line passes through, or it
can be determined by giving one point that it passes
through and somehow describing how “tilted” the
line is.

Slope
The slope of a line is a measure of how “tilted” the
line is. A highway sign might say something like
“6% grade ahead.” What does this mean, other than
that you hope your brakes work? What it means is
that the ratio of your drop in altitude to your
horizontal distance is 6%, or 6/100. In other words, if
you move 100 feet forward, you will drop 6 feet; if
you move 200 feet forward, you will drop 12 feet,
and so on.

We measure the slope of lines in much the same way,
although we do not convert the result to a percent.

Suppose we have a graph of an unknown straight
line. Pick any two different points on the line and
label them point 1 and point 2:

In moving from point 1 to point 2, we cover 4 steps
horizontally (the x direction) and 2 steps vertically
(the y direction):

Therefore, the ratio of the change in altitude to the
change in horizontal distance is 2 to 4. Expressing it
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as a fraction and reducing, we say that the slope of
this line is

To formalize this procedure a bit, we need to think
about the two points in terms of their x and y
coordinates.

Now you should be able to see that the horizontal
displacement is the difference between the x
coordinates of the two points, or

4 = 5 – 1,

and the vertical displacement is the difference
between the y coordinates, or

2 = 4 – 2.

In general, if we say that the coordinates of point 1
are (x1, y1) and the coordinates of point 2 are
(x2, y2),

then we can define the slope m as follows:

where (x1, y1) and (x2, y2) are any two distinct
points on the line.

ÿ It is customary (in the US) to use the letter m to
represent slope. No one knows why.

ÿ It makes no difference which two points are used
for point 1 and point 2. If they were switched,

both the numerator and the denominator of the
fraction would be changed to the opposite sign,
giving exactly the same result.

ÿ Many people find it useful to remember this
formula as “slope is rise over run.”

ÿ Another common notation is m = Dy/Dx, where
the Greek letter delta (D) means “the change in.”
The slope is a ratio of how much y changes per
change in x:

Horizontal Lines

A horizontal line has zero slope, because there is no
change in y as x increases. Thus, any two points will
have the same y coordinates, and since y1 = y2,

Vertical Lines

A vertical line presents a different problem. If you
look at the formula
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you see that there is a problem with the denominator.
It is not possible to get two different values for xl and
x2, because if x changes then you are not on the
vertical line anymore. Any two points on a vertical
line will have the same x coordinates, and so
x2 – x1 = 0. Since the denominator of a fraction
cannot be zero, we have to say that a vertical line
has undefined slope. Do not confuse this with the
case of the horizontal line, which has a well-defined
slope that just happens to equal zero.

Positive and Negative Slope
The x coordinate increases to the right, so moving
from left to right is motion in the positive x direction.
Suppose that you are going uphill as you move in the
positive x direction. Then both your x and y
coordinates are increasing, so the ratio of rise over
run will be positive—you will have a positive
increase in y for a positive increase in x. On the other
hand, if you are going downhill as you move from
left to right, then the ratio of rise over run will be
negative because you lose height for a given positive
increase in x. The thing to remember is:
As you go from left to right,

ÿ Uphill = Positive Slope
ÿ Downhill = Negative Slope

And of course, no change in height means that the
line has zero slope.

Some Slopes

Intercepts
Two lines can have the same slope and be in
different places on the graph. This means that in
addition to describing the slope of a line we need
some way to specify exactly where the line is on the
graph. This can be accomplished by specifying one
particular point that the line passes through.
Although any point will do, it is conventional to

specify the point where the line crosses the y-axis.
This point is called the y-intercept, and is usually
denoted by the letter b. Note that every line except
vertical lines will cross the y-axis at some point, and
we have to handle vertical lines as a special case
anyway because we cannot define a slope for them.

Same Slopes, Different y-Intercepts

Equations
The equation of a line gives the mathematical
relationship between the x and y coordinates of any
point on the line.

Let’s return to the example we used in graphing
functions. The equation

y = 2x – 1

produces the following graph:

This line evidently has a slope of 2 and a y intercept
equal to –1. The numbers 2 and –1 also appear in the
equation—the coefficient of x is 2, and the additive
constant is –1. This is not a coincidence, but is due to
the standard form in which the equation was written.
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Standard Form (Slope-Intercept Form)
If a linear equation in two unknowns is written in the
form

y = mx + b

 where m and b are any two real numbers, then the
graph will be a straight line with a slope of m and a y
intercept equal to b.

Point-Slope Form

As mentioned earlier, a line is fully described by
giving its slope and one distinct point that the line
passes through. While this point is customarily the y
intercept, it does not need to be. If you want to
describe a line with a given slope m that passes
through a given point (x1, y1), the formula is

To help remember this formula, think of solving it
for m:

Since the point (x, y) is an arbitrary point on the line
and the point (x1, y1) is another point on the line, this
is nothing more than the definition of slope for that
line.

Two-Point Form
Another way to completely specify a line is to give
two different points that the line passes through. If
you are given that the line passes through the points
(x1, y1) and (x2, y2), the formula is

This formula is also easy to remember if you notice
that it is just the same as the point-slope form with
the slope m replaced by the definition of slope,
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Systems of Linear Equations

A. The Solutions of a System of Equations

A system of equations refers to a number of
equations with an equal number of variables. We will
only look at the case of two linear equations in two
unknowns. The situation gets much more complex as
the number of unknowns increases, and larger
systems are commonly attacked with the aid of a
computer.

A system of two linear equations in two unknowns
might look like

This is the standard form for writing equations when
they are part of a system of equations: the variables
go in order on the left side and the constant term is
on the right. The bracket on the left indicates that the
two equations are intended to be solved
simultaneously, but it is not always used.

When we talk about the solution of this system of
equations, we mean the values of the variables that
make both equations true at the same time. There
may be many pairs of x and y that make the first
equation true, and many pairs of x and y that make
the second equation true, but we are looking for an x
and y that would work in both equations. In the
following pages we will look at algebraic methods
for finding this solution, if it exists.

Because these are linear equations, their graphs will
be straight lines. This can help us visualize the
situation graphically. There are three possibilities:

1. Independent Equations
ÿ Lines intersect
ÿ One solution

In this case the two equations describe lines that
intersect at one particular point. Clearly this point is
on both lines, and therefore its coordinates (x, y) will
satisfy the equation of either line. Thus the pair (x, y)
is the one and only solution to the system of
equations.

2. Dependent Equations
ÿ Equations describe the same line
ÿ Infinite number of solutions

Sometimes two equations might look different but
actually describe the same line. For example, in

The second equation is just two times the first
equation, so they are actually equivalent and would
both be equations of the same line. Because the two
equations describe the same line, they have all their
points in common; hence there are an infinite number
of solutions to the system.

ÿ Attempting to solve gives an identity
If you try to solve a dependent system by algebraic
methods, you will eventually run into an equation
that is an identity. An identity is an equation that is
always true, independent of the value(s) of any
variable(s). For example, you might get an equation
that looks like x = x, or 3 = 3. This would tell you
that the system is a dependent system, and you could
stop right there because you will never find a unique
solution.
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3. Inconsistent Equations
ÿ Lines do not intersect (Parallel Lines; have the

same slope)
ÿ No solutions

If two lines happen to have the same slope, but are
not identically the same line, then they will never
intersect. There is no pair (x, y) that could satisfy
both equations, because there is no point (x, y) that is
simultaneously on both lines. Thus these equations
are said to be inconsistent, and there is no solution.
The fact that they both have the same slope may not
be obvious from the equations, because they are not
written in one of the standard forms for straight lines.
The slope is not readily evident in the form we use
for writing systems of equations. (If you think about
it you will see that the slope is the negative of the
coefficient of x divided by the coefficient of y).

• Attempting to solve gives a false statement
By attempting to solve such a system of equations
algebraically, you are operating on a false
assumption—namely that a solution exists. This will
eventually lead you to a contradiction: a statement
that is obviously false, regardless of the value(s) of
the variable(s). At some point in your work you
would get an obviously false equation like 3!=!4.
This would tell you that the system of equations is
inconsistent, and there is no solution.!

Solution by Graphing
For more complex systems, and especially those that
contain non-linear equations, finding a solution by
algebraic methods can be very difficult or even
impossible. Using a graphing calculator (or a
computer), you can graph the equations and actually
see where they intersect. The calculator can then give
you the coordinates of the intersection point. The
only drawback to this method is that the solution is
only an approximation, whereas the algebraic method
gives the exact solution. In most practical situations,
though, the precision of the calculator is sufficient.
For more demanding scientific and engineering

applications there are computer methods that can find
approximate solutions to very high precision.

B. Addition Method

The whole problem with solving a system of
equations is that you cannot solve an equation that
has two unknowns in it. You need an equation with
only one variable so that you can isolate the variable
on one side of the equation. Both methods that we
will look at are techniques for eliminating one of the
variables to give you an equation in just one
unknown, which you can then solve by the usual
methods.

The first method of solving systems of linear
equations is the addition method, in which the two
equations are added together to eliminate one of the
variables.

Adding the equations means that we add the left
sides of the two equations together, and we add the
right sides together. This is legal because of the
Addition Principle, which says that we can add the
same amount to both sides of an equation. Since the
left and right sides of any equation are equal to each
other, we are indeed adding the same amount to both
sides of an equation.

Consider this simple example:

Example:

If we add these equations together, the terms
containing y will add up to zero (2y plus -2y), and we
will get

or

5x = 5

x = 1

However, we are not finished yet—we know x, but
we still don’t know y. We can solve for y by
substituting the now known value for x into either of
our original equations. This will produce an equation
that can be solved for y:
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Now that we know both x and y, we can say that the
solution to the system is the pair (1, 1/2).

This last example was easy to see because of the
fortunate presence of both a positive and a negative
2y. One is not always this lucky. Consider

Example:

Now there is nothing so obvious, but there is still
something we can do. If we multiply the first
equation by -3, we get

(Don’t forget to multiply every term in the equation,
on both sides of the equal sign). Now if we add them
together the terms containing x will cancel:

or

As in the previous example, now that we know y we
can solve for x by substituting into either original
equation. The first equation looks like the easiest to
solve for x, so we will use it:

And so the solution point is (-4, 7/2).

Now we look at an even less obvious example:

Example:

Here there is nothing particularly attractive about
going after either the x or the y. In either case, both
equations will have to be multiplied by some factor
to arrive at a common coefficient. This is very much
like the situation you face trying to find a least
common denominator for adding fractions, except
that here we call it a Least Common Multiple
(LCM). As a general rule, it is easiest to eliminate
the variable with the smallest LCM. In this case that
would be the y, because the LCM of 2 and 3 is 6. If
we wanted to eliminate the x we would have to use
an LCM of 10 (5 times 2). So, we choose to make the
coefficients of y into plus and minus 6. To do this,
the first equation must be multiplied by 3, and the
second equation by 2:

or

Now adding these two together will eliminate the
terms containing y:

or

x = 2

We still need to substitute this value into one of the
original equation to solve for y:

Thus the solution is the point (2, 2).
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C. Substitution Method

When we used the Addition Method to solve a
system of equations, we still had to do a substitution
to solve for the remaining variable. With the
substitution method, we solve one of the equations
for one variable in terms of the other, and then
substitute that into the other equation. This makes
more sense with an example:

Example:
2y + x = 3 (1)

4y – 3x = 1 (2)

Equation 1 looks like it would be easy to solve for x,
so we take it and isolate x:

2y + x = 3

x = 3 – 2y (3)

Now we can use this result and substitute 3 - 2y in
for x in equation 2:

Now that we have y, we still need to substitute back
in to get x. We could substitute back into any of the
previous equations, but notice that equation 3 is
already conveniently solved for x:

And so the solution is (1, 1).

As a rule, the substitution method is easier and
quicker than the addition method when one of the
equations is very simple and can readily be solved
for one of the variables.
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Exponents and Roots

A. Exponents

Definition
In xn, x is the base, and n is the exponent (or power)

We defined positive integer powers by

xn = x · x · x · . . . · x (n factors of x)

Properties
The above definition can be extended by requiring
other powers (i.e. other than positive integers) to
behave like the positive integer powers. For example,
we know that

xn · xm = xn+m

for positive integer powers, because we can write out
the multiplication.

Example: 

x2 x5 = (x · x)(x · x · x · x · x)
=

 x · x · x · x · x · x · x = x7

We now require that this rule hold even if n and m
are not positive integers, although this means that we
can no longer write out the multiplication (How do
you multiply something by itself a negative number
of times? Or a fractional number of times?).

We can find several new properties of exponents by
similarly considering the rule for dividing powers:

This rule is quite reasonable when m and n are
positive integers and m > n. For example:

where indeed 5 – 2 = 3.

However, in other cases it leads to situations where
we have to define new properties for exponents.
First, suppose that m < n. We can simplify it by
canceling like factors as before:

But following our rule would give

In order for these two results to be consistent, it must
be true that

or, in general,

ÿ Notice that a minus sign in the exponent does not
make the result negative—instead, it makes it the
reciprocal of the result with the positive
exponent.

Now suppose that n = m. The fraction becomes

which is obviously equal to 1. But our rule gives

Again, in order to remain consistent we have to say
that these two results are equal, and so we define

x0 = 1

for all values of x (except x = 0, because 00 is
undefined)

 Summary of Exponent Rules
The following properties hold for all real numbers x,
y, n, and m, with these exceptions:

1.      00 is undefined

2.      Dividing by zero is undefined

3.      Raising negative numbers to fractional powers
can be undefined
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x1 = x

x0 = 1

xn · xm = xn+m

(xn)m = xnm

B. Roots

Definition
Roots are the inverse of exponents. An nth root
“undoes” raising a number to the nth power, and
vice-versa. (The correct terminology for these types
of relationships is inverse functions, but powers and
roots can only be strictly classified as inverse
functions if we take care of some ambiguities
associated with plus or minus signs, so we will not
worry about this yet). The common example is the
square root, which “undoes” the act of squaring. For
example, take 3 and square it to get 9. Now take the
square root of 9 and get 3 again. It is also possible to
have roots related to powers other than the square.
The cube root, for example, is the inverse of raising
to the power of 3. The cube root of 8 is 2 because 23

= 8. In general, the nth root of a number is written:

 if and only if 

 because  43 = 64

We leave the index off the square root symbol only
because it is the most common one. It is understood
that if no index is shown, then the index is 2.

 if and only if 

 because  42 = 16

Square Roots
The square root is the inverse function of squaring
(strictly speaking only for positive numbers, because
sign information can be lost)

Principal Root
ÿ Every positive number has two square roots, one

positive and one negative

Example:  2 is a square root of 4 because 2 x 2 = 4,
but –2 is also a square root of 4 because (–2) x
(–2) = 4

To avoid confusion between the two we define the
symbol (this symbol is called a radical) to mean

the principal or positive square root.

The convention is: For any positive number x,

 is the positive root, and

 is the negative root.

If you mean the negative root, use a minus sign in
front of the radical.

Example: 

Properties

  for all non-negative numbers x

  for all non-negative numbers x

However, if x happens to be negative, then squaring
it will produce a positive number, which will have a
positive square root, so

 for all real numbers x

ÿ You don’t need the absolute value sign if you
already know that x is positive. For example,

, and saying anything about the absolute
value of 2 would be superfluous. You only need
the absolute value signs when you are taking the
square root of a square of a variable, which may
be positive or negative.

ÿ The square root of a negative number is
undefined, because anything times itself will
give a positive (or zero) result.

 (your calculator will probably
say ERROR).

ÿ Note: Zero has only one square root (itself). Zero
is considered neither positive nor negative.

WARNING: Do not attempt to do something like
the distributive law with radicals:

 (WRONG) or

 (WRONG).
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This is a violation of the order of operations. The
radical operates on the result of everything inside of
it, not individual terms. Try it with numbers to see:

  (CORRECT)

But if we (incorrectly) do the square roots first, we
get

 (WRONG)

However, radicals do distribute over products:

and

provided that both a and b are non-negative
(otherwise you would have the square root of a
negative number).

Perfect Squares
Some numbers are perfect squares, that is, their
square roots are integers:

0, 1, 4, 9, 16, 25, 36, etc.

It turns out that all other whole numbers have
irrational square roots:

, , ,  etc. are all irrational numbers.

The square root of an integer is either perfect or
irrational

C. Simplifying Radical Expressions

  for all real numbers

 if both x and y are non-negative, and

 if both x and y are non-negative, and y is not
zero

WARNING: Never cancel something inside a
radical with something outside of it:

  WRONG! If you did this you would be
canceling a 3 with , and they are certainly not the
same number.

The general plan for reducing the radicand is to
remove any perfect powers. We are only considering
square roots here, so what we are looking for is any
factor that is a perfect square. In the following
examples we will assume that x is positive.

Example:

In this case the 16 was recognized as a perfect square
and removed from the radical, causing it to become
its square root, 4.

Example:  

Although x3 is not a perfect square, it has a factor of
x2, which is the square of x.

Example:  

Here the perfect square factor is x4, which is the
square of x2.

Example:  

In this example we could take out a 4 and a factor of
x2, leaving behind a 2 and one factor of x.

ÿ The basic idea is to factor out anything that is
“square-rootable” and then go ahead and square
root it.

 
D. Rationalizing the Denominator

One of the “rules” for simplifying radicals is that you
should never leave a radical in the denominator of a
fraction. The reason for this rule is unclear (it
appears to be a holdover from the days of slide
rules), but it is nevertheless a rule that you will be
expected to know in future math classes. The way to
get rid of a square root is to multiply it by itself,
which of course will give you whatever it was the
square root of. To keep things legal, you must do to
the numerator whatever you do to the denominator,
and so we have the rule:

If the Denominator is Just a Single Radical

Multiply the numerator and denominator by the
denominator
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Example: 

ÿ Note: If you are dealing with an nth root instead
of a square root, then you need n factors of that
root in order to make it go away. For instance, if
it is a cube root (n = 3), then you need to
multiply by two more factors of that root to give
a total of three factors.

If the Denominator Contains Two Terms
If the denominator contains a square root plus some
other terms, a special trick does the job. It makes use
of the difference of two squares formula:

(a + b)(a – b) = a2 – b2

 Suppose that your denominator looked like a + b,
where b was a square root and a represents all the
other terms. If you multiply it by a – b, then you will
end up with the square of your square root, which
means no more square roots. It is called the
conjugate when you replace the plus with a minus (or
vice-versa). An example would help.
 
Example: 
Given:

 

Multiply numerator and denominator by the
conjugate of the denominator:

Multiply out:
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Quadratic Equations

Definition

ax2 + bx + c = 0

a, b, c are constants (generally integers)

Roots
Synonyms: Solutions or Zeros 

ÿ Can have 0, 1, or 2 real roots

Consider the graph of quadratic equations. The
quadratic equation looks like ax2 + bx + c = 0, but if
we take the quadratic expression on the left and set
it equal to y, we will have a function:

y = ax2 + bx + c

When we graph y vs. x, we find that we get a curve
called a parabola. The specific values of a, b, and c
control where the curve is relative to the origin (left,
right, up, or down), and how rapidly it spreads out.
Also, if a is negative then the parabola will be
upside-down. What does this have to do with
finding the solutions to our original quadratic
equation? Well, whenever y = 0 then the equation
y = ax2 + bx + c is the same as our original equation.

Graphically, y is zero whenever the curve crosses
the x-axis. Thus, the solutions to the original
quadratic equation (ax2 + bx + c = 0) are the values
of x where the function (y = ax2 + bx + c) crosses
the x-axis. From the figures below, you can see that
it can cross the x-axis once, twice, or not at all.

 Actually, if you have a graphing calculator this
technique can be used to find solutions to any
equation, not just quadratics. All you need to do is
 
1. Move all the terms to one side, so that it is equal

to zero
2. Set the resulting expression equal to y (in place of

zero)
3. Enter the function into your calculator and graph

it
4. Look for places where the graph crosses the x-axis

Your graphing calculator most likely has a function
that will automatically find these intercepts and give
you the x-values with great precision. Of course, no
matter how many decimal places you have it is still
just an approximation of the exact solution. In real
life, though, a close approximation is often good
enough.

Solving Quadratic Equations

A. Solving by Square Roots
No First-Degree Term
If the quadratic has no linear, or first-degree term
(i.e. b = 0), then it can be solved by isolating the x2

and taking square roots of both sides:

• You need both the positive and negative roots

because , so x could be either positive or
negative.

• This is only going to give a real solution if
either a or c is negative (but not both)

B. Solving by Factoring
Solving a quadratic (or any kind of equation) by
factoring it makes use of a principle known as the
zero-product rule.
 
Zero Product Rule

If ab = 0 then either a = 0 or b = 0 (or both).

In other words, if the product of two things is zero
then one of those two things must be zero, because
the only way to multiply something and get zero is
to multiply it by zero.

Thus, if you can factor an expression that is equal to
zero, then you can set each factor equal to zero and
solve it for the unknown.
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ÿ The expression must be set equal to zero to use
this principle

ÿ You can always make any equation equal to
zero by moving all the terms to one side.

Example:
Given:

x2 – x = 6

Move all terms to one side:

x2 – x – 6 = 0

Factor:

(x – 3)(x + 2) = 0

Set each factor equal to zero and solve:

(x – 3) = 0   OR   (x + 2) = 0

Solutions:

x = 3 OR   x = -2
 
No Constant Term
If a quadratic equation has no constant term (i.e.
c = 0) then it can easily be solved by factoring out
the common x from the remaining two terms:

Then, using the zero-product rule, you set each
factor equal to zero and solve to get the two
solutions:

x = 0   or   ax + b = 0

x = 0   or   x = –b/a
 
WARNING: Do not divide out the common factor
of x or you will lose the x = 0 solution. Keep all the
factors and use the zero-product rule to get the
solutions.

Trinomials
When a quadratic has all three terms, you can still
solve it with the zero-product rule if you are able to
factor the trinomial.

ÿ Remember, not all trinomial quadratics can be
factored with integer constants

If it can be factored, then it can be written as a
product of two binomials. The zero-product rule can
then be used to set each of these factors equal to
zero, resulting in two equations that are both simple
linear equations that can be solved for x. See the

above example for the zero-product rule to see how
this works.

A more thorough discussion of factoring trinomials
may be found in the chapter on polynomials, but
here is a quick review:

Tips for Factoring Trinomials

1) Clear fractions (by multiplying through by the
common denominator)

2) Remove common factors if possible

3) If the coefficient of the x2 term is 1, then

4) x2 + bx + c = (x + n)(x + m), where n and m
i. Multiply to give c
ii. Add to give b

5) If the coefficient of the x2 term is not 1, then
use either
i. Guess-and Check
ii. List the factors of the coefficient of the x2

term
iii. List the factors of the constant term
iv. Test all the possible binomials you can

make from these factors
v. Factoring by Grouping

6) Find the product ac
i. Find two factors of ac that add to give b
ii. Split the middle term into the sum of two

terms, using these two factors
iii. Group the terms into pairs
iv. Factor out the common binomial

C. Solving by Completing the Square
The technique of completing the square is presented
here primarily to justify the quadratic formula,
which will be presented next. However, the
technique does have applications besides being used
to derive the quadratic formula. In analytic
geometry, for example, completing the square is
used to put the equations of conic sections into
standard form.
Before considering the technique of completing the
square, we must define a perfect square trinomial.

Perfect Square Trinomial
What happens when you square a binomial?

ÿ Note: that the coefficient of the middle term
(2a) is twice the square root of the constant term
(a2)
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ÿ Thus the constant term is the square of half the
coefficient of x

ÿ Important: These observations only hold true if
the coefficient of x is 1.

This means that any trinomial that satisfies this
condition is a perfect square. For example,

x2 + 8x + 16

is a perfect square, because half the coefficient of x
(which in this case is 4) happens to be the square
root of the constant term (16). That means that

x2 + 8x + 16 = (x + 4)2

Multiply out the binomial (x + 4) times itself and
you will see that this works.

The technique of completing the square is to take a
trinomial that is not a perfect square, and make it
into one by inserting the correct constant term
(which is the square of half the coefficient of x). Of
course, inserting a new constant term has to be done
in an algebraically legal manner, which means that
the same thing needs to be done to both sides of the
equation. This is best demonstrated with an
example.

Example:   
Given Equation:

Move original constant to other side:

Add new constant to both sides
(the square of half the coefficient of x):

Write left side as perfect square:

Square root both sides
(remember to use plus-or-minus):

Solve for x:

Notes
ÿ Finds all real roots. Factoring can only find

integer or rational roots.

• When you write it as a binomial squared, the
constant in the binomial will be half of the
coefficient of x.

If the Coefficient of x2 is Not 1
First divide through by the coefficient, then proceed
with completing the square.

Example:  
Given Equation:

Divide through by coefficient of x2:
(in this case a 2)

Move constant to other side:

Add new constant term:
(the square of half the coefficient of x, in this case
9/16):

Write as a binomial squared:
(the constant in the binomial is half the coefficient
of x)

Square root both sides:
(remember to use plus-or-minus)

Solve for x:

Thus:
x = 1⁄2  or  x = -2

D. Solving using the Quadratic Formula
The solutions to a quadratic equation can be found
directly from the quadratic formula.
The equation

ax2 + bx + c = 0

has solutions
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The advantage of using the formula is that it always
works. The disadvantage is that it can be more time-
consuming than some of the methods previously
discussed. As a general rule you should look at a
quadratic and see if it can be solved by taking
square roots; if not, then if it can be easily factored;
and finally use the quadratic formula if there is no
easier way.

·        Notice the plus-or-minus symbol (±) in the
formula. This is how you get the two different
solutions—one using the plus sign, and one with the
minus.
·        Make sure the equation is written in standard
form before reading off a, b, and c.
·        Most importantly, make sure the quadratic
expression is equal to zero.

The Discriminant
The formula requires you to take the square root of
the expression b2 – 4ac, which is called the
discriminant because it determines the nature of the
solutions. For example, you can’t take the square
root of a negative number, so if the discriminant is
negative then there are no solutions.

If b2 – 4ac > 0 There are two distinct real roots
If b2 – 4ac = 0 There is one real root
If b2 – 4ac < 0 There are no real roots

Deriving the Quadratic Formula
The quadratic formula can be derived by using the
technique of completing the square on the general
quadratic formula:
Given:

Divide through by a:

Move the constant term to the right side:

Add the square of one-half the coefficient of x to
both sides:

Factor the left side (which is now a perfect square),
and rearrange the right side:

Get the right side over a common denominator:

Take the square root of both sides (remembering to
use plus-or-minus):

Solve for x:
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Basic Concepts of Statistics

Note: This section is not intended to provide a full
coverage of statistics. A formal book on statistical
methods and applications will be more appropriate
for that. This section, instead, intends to provide a
quick overview of simple statistical approaches used
to establish relationships between data and how
these can be used in solving some environmental
problems.

Introduction
What is Statistics?
Statistics is the discipline concerned with the
collection, organization, and interpretation of
numerical data, especially as it relates to the
analysis of population characteristics by inference
from sampling. It addresses all elements of
numerical analysis, from study planning to the
presentation of final results. Statistics, therefore, is
more than a compilation of computational
techniques. It is a means of learning from data, a
way of viewing information, and a servant of all
science.

In a simplistic way, we can say that Statistics boils
down to two approaches: exploration and
adjudication. The purpose of exploration is to
uncover patterns and clues within data sets.
Adjudication, on the other hand, serves to determine
whether the uncovered patterns are valid and can be
generalized. Both approaches are as important and
none can be minimized in the statistical process of
data analysis. Statistics is a great quantitative tool to
help make any method of enquiry more meaningful
and particularly as objective as possible. However,
one must avoid falling in the trap of the “black hole
of empiricism” whereby data are analyzed with the
hopes of discovering the fundamental “laws”
responsible for observed outcomes. One must first
establish an explanatory protocol of what these
laws/processes can be and then use Statistics
(among other tools) to test the appropriateness, and
sometimes exactness, of such explanations. This
pre-formulation of plausible explanations is at the
core of the “scientific method” and is called
“hypothesis formulation”. Hypotheses are
established as educated hunches to explain observed
facts or findings and should be constructed in ways
that can lead to anticipatory deductions (also called
predictions). Such predictions should of course be
verifiable through data collection and analysis. This
is probably where Statistics come most in handy in
helping judge the extent to which the recovered data
agree with the established predictions (although
Statistics also contributes substantially to
formulation of test protocols and how data might be
collected to verify hypotheses).

Statistics thus seeks to make each process of the
scientific method (observation, hypothesis
formulation, prediction, verification) more objective
(so that things are observed as they are, without
falsification according to some preconceived view)
and reproducible (so that we might judge things in
terms of the degree to which observations might be
repeated).

It is not the scope of this short introduction to go
over the range of statistical analyses possible. In
fact, this text explores only selective issues related
to statistics leaving room for true course in statistics
(applied or theoretical) to develop all concepts more
fully. Below we will talk succinctly about variables,
summary statistics, and the evaluation of linear
relationships between two variables.

A. Measurement
To perform statistical operations we need an object
of analysis. For this, number (or codes) are used as
the quantitative representation of any specific
observation. The assignment of number or codes to
describe a pre-set subject is called measurement.
Measurements that can be expressed by more than
one value during a study are called variables.
Examples of variables are AGE of individuals,
WEIGHT of objects, or NAME of species.
Variables only represent the subject of the
measurement, not any intrinsic value or code.
Variables can be classified according to the way in
which they are encoded (i.e. numeric, text, date) or
according to which scale they are measured.
Although there exists many ways to classify
measurement scales, three will be considered here:
ÿ Nominal (qualitative, categorical)
ÿ Ordinal (semi-quantitative, “ranked”)
ÿ Scale (quantitative, “continuous”,

interval/ratio)
Nominal variables are categorical attributes that
have no inherent order. For example SEX (male or
female) is a nominal variable, as is NAME and
EYECOLOR.
Ordinal variables are ranked-ordered characteristic
and responses. For example an opinion graded on a
1-5 scale (5 = strongly agree; 4 = agree; 3 =
undecided; 2 = disagree; 1 = strongly disagree).
Although the categories can be put in ascending (or
descending) order, distances (“differences”)
between possible responses are uneven (i.e. the
distance between “strongly agree” and “agree” is
not the same as the distance between “agree” and
“undecided”).  This makes the measurement ordinal,
and not scaled.
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Scale variables represent quantitative
measurements in which differences between
possible responses are uniform (or continuous). For
example LENGTH (measured in centimeters) is a
scale measurement. No matter how much you cut
down the measurement into a smaller fraction (i.e. a
tenth of a centimeter) the difference between on
measurement and the next still remains the same
(i.e. the difference between 3 centimeters and 2
centimeters or 3 millimeters and 2 millimeters is the
same as that between 2 cm and 1 cm or 2 mm and 1
mm).

Notice that each step up the measurement scale
hierarchy takes on the assumptions f the step below
it and then adds another restriction. That is, nominal
variables are named categories. Ordinal variables
are named categories that can be put into logical
order. Scale variables are ordinal variables that have
equal distance between possible responses.

Data Quality
Something must be said about the quality of data
used. A statistical analysis is only as good as its data
and interpretative limitations may be imposed by
the quality of the data rather than by the analysis. In
addressing data quality, we must make a distinction
between measurement error and processing error.
Measurement error is represented by differences
between the “true” quality of the object observed
(i.e the true length of a fish) and what appears
during data collection (the actual scale measurement
collected during the study). Processing errors are
errors that occur during data handling (i.e. wrong
data reporting, erroneous rounding or
transformation). One must realize that errors are
inherent to any measurement and that trying to
avoid them is virtually impossible. What must be
done is characterize these errors and try minimizing
in the best way possible.

Population and Sample
Most statistical analyses are done to learn about a
specific population (the total number of trouts in a
specific river, the concentration of a contaminant in
a lake’s total sediment bed). The population is thus
the universe of all possible measurements in a
defined unit. When the population is real, it is
sometimes possible to obtain information on the
entire population. This type of study is called
census. However, performing a census is usually
impractical, expensive, and time-consuming, if not
downright impossible. Therefore, nearly all
statistical studies are based on a subset of the
population, which is called sample. Whenever
possible, a probabilility sample should be used. A
probability samples is a sample in which a) every
population member (item) has known probability of
being sampled, b) the sample is drawn by some

method of chance consistent with these
probabilities, and c) selection probabilities are
considered when making estimates from the
samples.

B. Central Tendencies

Although we do not go over frequency distribution
of a data set here, we need to develop some concise
statement about the data distribution as a whole. To
do this, we need numerical summary measures of
the data (“summary statistics”). The most
commonly used descriptive statistics are measures
of central tendency. Taken together, such measures
provide a great deal of information about the data
set but most importantly, they attempt to locate the
middle or center point in a group of data.

However, before we can develop and analyze these
concepts quantitatively, we need to define an
important mathematical symbol for the
determination of central tendencies (and other
statistics): the summation notation.
The Greek letter S (a capital sigma) is used to
designate a mathematical summation. We use the
summation notation to write the sum of the values
of a variable. The summation sign can be read as
“the sum of.” The expression Sxi means that we
should sum all the values of xi (i.e., xi + x2 + ... xn),
where n is the total number of observations in the
data set.
For example, let’s consider a simple data set
consisting of the following ten age values:

21 42
5 11
30 50
28 57
24 52

In discussing these data, let:
n, represent sample size (i.e. n = 10)
X, represent the variable (i.e. age)
xi, represent the value of the ith observation
(i.e. x1 = 21)

The symbol S (capital “sigma”) is the summation
sign, indicating that all values should be added. For
the illustrative data set Sxi = x1 + x2 + x3 + … + x10 =
21 + 42 + 5 + 11 + 30 + 50 + 28 + 27 + 24 + 52 =
290.

To use the summation notation, you should realize
that the summation sign is always followed by a
symbol or mathematical expression. To compute
S(x-1)2, your first task is to calculate all of the (x-1)2

values and then sum the results.
In general, the best strategy for using summation
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notation is to proceed as follows:
1) Identify the symbol or expression following the
summation sign.
2) Use the symbol or expression as a column
heading and list in the column all of the values
corresponding to the symbol or all of the values
calculated for the expression.
3) Finally, you sum the values in the column.

Mean
When mentioned without specification, the terms
mean refers to the arithmetic average of the data
set.  Statisticians refer to to two different types of
means (arithmetic averages): the population mean
and the sample mean.
The population mean (m: pronounced “mu”) is:

† 

m =
xiÂ

N
=

1
N

xiÂ

Where Sxi represents the sum of all values in the
population and N represents the population size. For
example, assuming the sum of all age values (Sx) of
a population of 600 individuals (N) is 17,703, then
the population mean (m) is = 17,703/600 = 29.505.

Although knowledge of the population mean is
valuable, it is often difficult (if not impossible) to
get information on the entire population. This forces
us to study the population mean indirectly, through
the sample mean. The sample mean (

† 

x :
pronounced “x bar”) is:

† 

x =
xiÂ

n
=

1
n

xiÂ

Where Sxi represents the sum of all values in the
sample and n represents the sample size. For our
illustrative data set above, Sx = 290 and n = 10.
Therefore, the sample mean (

† 

x ) is = 290/10 = 29.0
(since we rarelyhave data on all possible values of a
population, 

† 

x  is usually calculated instead of m).
ÿ The mean of a distribution represents its

gravitational center (where the distribution
would balance if placed on a “numerical scale”.

ÿ The population mean is often called the
“expected value”, because if you were to select
one observation at random from the population,
the population mean would provide a
reasonable expectation of that value.

ÿ The sample mean is a) a good reflection of
individual values drawn at random from the
sample, b) a good reflection of individual values

drawn at random from the population, and c) a
good estimate of the population mean.

Median
Sometimes an extreme value, called an outlier, will
have a disproportionate influence on the mean and
thus may affect how well the mean represents the
central tendency of the data (i.e. average income of
families; or average price of homes in a city). In that
case, the median is a much better indicator of
central tendency of such data sets. The median is
thus the value that is greater than or equal to the half
of the values in the data set. The median has a depth
of

† 

n +1
2

where the depth in an ordered array is the distance
from the lowest value to any point in the array. In
other words, the median is the 50th percentile in the
distribution of the data since half of the observations
fall above it and half below it. For an illustrative
example let’s consider the following ordered array:

5   11   21   24   27   28   30   42   50   52
The median has a depth of (10+1)/2 = 5.5. So the
median falls right in between the 5th and 6th numbers
in the ordered array (27 and 28, respectively). The
median is thus the average between 27 and 28 =
27.5. When n is odd, the depth of the median will be
an integer. For the following data set:

4   7   8   11   12
n = 5 and the median has a depth of (5+1)/2 = 3.
Therefore the median is the 3rd datum and = 8.

Although the median conveys less precise
information than the mean, it is sometimes in
preference to the mean when the data set contains
extreme numbers that “skew” the distribution
towards one tail (see discussion below).

Mode
The final measure of central tendency is the mode.
The mode is simple the data value that occurs most
often (with greatest frequency) in any distribution.
The distribution can have more than one mode (if
for example there are two numbers with equally
large frequency, then the distribution is called
bimodal). When each value of a data set occurs only
once, then the data set has no mode. When data sets
are small to moderate size, the mode is rarely used.

Comparison of Central Tendency Parameters
The mean, median, and mode are equivalent when
the distribution is unimodal and symmetrical (Fig. 1
below).
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Fig. 1. Symmetric frequency distribution of a data
set (from Gould, 1996; “Full House: The spread of
excellence from Plato to Darwin”; Random House
Inc. NY, NY).

However, in an asymmetric distribution, the data
falls more on one side of the center (or middle) than
on the other side. In that case skewness exists in the
data. Skewness will be either positive (extended
“tail” of extreme data to the right of the central
tendency) or negative (extended “tail” of extreme
data to the left of the central tendency). If data are
strongly skewed, the mean is not a good measure of
central tendency as it gets disproportionately
“pulled” towards the outliers. In asymmetry the
median is approximately one-third the distance
between the mean and the mode:

Fig. 2. Asymmetric frequency distribution of a data
set: Positive skewness (from Gould, 1996).

Measure of Dispersion
A useful descriptive statistic complementary to the
measures of central tendency is the measure of
dispersion. The measure of dispersion tells how
much the data do or do not cluster around the mean.
The standard deviation (syn: “root mean square”) is
the most common measure of dispersion and is
simply the average square deviation of the data
from the mean. The deviation of a data point is its
difference from the mean:

deviationi = xi - 

† 

x
Although the sum of deviations may seem like a

good basis for a measure of spread (dispersion
around the mean), the sum of the deviations will
always be eual to zero. Therefore, the sum of the
deviation cannot be used to measure spread.
Instead, statisticians square the deviations before
summing them up. This statistics, known as sum of
squares (SS) is:

† 

SS = (xi - x)2

i=1

n

Â

The variance of the data can now be calculated. The
population standard deviation (s), for example, is
the square root of the population variance:

† 

s 2 =
SS
N

However, since we rarely have data on the entire
population, we usually must calculate the sample
standard deviation (s), which is the square root of
the sample variance:

† 

s2 =
SS

n -1
Interpreting standard deviation is not as easy as, say,
interpreting a mean. One thing to keep in mind is
that big standard deviations are associated with big
data spreads and small standard deviations are
associated with small data spreads. One way to
interpret the standard deviation is to indicate the
percent data that is within a specified number of
standard deviations of the mean. There are two rules
for applying this approach: when the data is
distributed normally, and when it is non normally
distributed.

Normal distribution
ÿ About 68% of all values lie within 1 standard

deviation from the mean.
ÿ About 95% of all values lie within 2 standard

deviations from the mean.
ÿ Nearly all values will lie within 3 standard

deviations from the mean.

Non-normal distribution
ÿ At least 75% of all values lie within 2 standard

deviations from the mean.
ÿ At least seven-eighths of all values will lie

within 3 standard deviations from the mean.

C. Correlations

Correlations quantify the extent to which two
quantitative (continuous) variables, X and Y, “go
together”. When high values of X are associated
with high values of Y, a positive correlation is said



Math Primer (MPA Environmental Sciences and Policy) 30

to exist. When high values of X are associated with
low values of Y, a negative correlation is said to
exist.

The first step in determining if a relationship exists
between two variables is to plot them in the form of
a scatter plot. Let’s consider the following data
presented in Table 1.

Year
Atmos. CO2

(ppmv)
World population

(billions)
1791 279.7 0.9
1816 283.8 1.0
1843 287.4 1.1
1854 288.2 1.2
1869 289.3 1.3
1887 292.3 1.5
1899 295.8 1.7
1909 299.2 1.8
1921 301.6 2.0
1943 307.9 2.3
1953 312.7 2.7
1960 316.9 3.0
1965 320.1 3.3
1970 325.7 3.7
1975 331.2 4.1
1980 338.7 4.5
1985 345.9 4.9
1990 354.2 5.3
1995 360.9 5.7
2000 369.4 6.1

Both human populations levels and the
concentrations of CO2 in the atmosphere have
shown exponential growth in the last two centuries
(see figure one below), and such growth has been
considered as indicators of global change (See Aber
and Melillo, 2001: Terrestrial Ecosystems;
Academic Press, London, UK).
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Fig. 3. Human population and atmospheric CO2
concentrations from 1750 to 2001. (Population data
from the US Census Bureau:
http://www.census.gov/ipc/www/world.html and

http://www.census.gov/ipc/www/worldhis.html; CO2 data from
Keeling and Whorf: http://cdiac.esd.ornl.gov/trends/co2/sio-
mlo.htm and Neftel et al.
http://cdiac.esd.ornl.gov/trends/co2/siple.htm)

On a first look, the two variables seem to behave
similarly and may indicate a relationship between
them. The first step in determining if there exists
such relationship between the variables is to plot the
data in the form of scatter plot. Figure 4 below
indeed reveals that high values of Y are related to
high values of X. That is, as the total amount of
people on Earth increases, the atmospheric CO2
concentration also increases.
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Fig. 4. Human population vs. atmospheric CO2
concentrations from 1750 to 2001

In general, a scatter plot may reveal either
ÿ a positive relationship between the two studied

variables (high values of X associated to high
values of Y)

ÿ a negative relationship between the two studied
variables (high values of X associated to low
values of Y)

ÿ no relationship
Clearly, Figure 4 shows a strong positive
relationship between human population and
atmospheric CO2. It is said that the two variables are
correlated. Such correlation between two variables
can be quantified with a unit-free statistics called
Pearson’s correlation coefficient, denoted r. When
all points on a scatter plot fall directly on an upward
incline, r = +1. When all points on a scatter plot fall
directly on a downward incline, r = -1.
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A. A perfect positive correlation (r = +1)

B. A perfect negative correlation (r = -1)

We quantify the strength of the correlation by the
degree to which data adhere to an imaginary trend
line that passes through the data. Strong correlations
are associated with scatter clouds that adhere
closely to the imaginary trend line. Weak
correlations are associated with scatter clouds that
adhere weakly to the imaginary trend line. The
stength of the correlation is quantified by the value
of r. The closer r is to +1, the stronger the positive
correlation. The closer r is to -1, the stronger the
negative correlation. Examples of strong and weak
correlations are shown below:
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between natural organic matter and arsenic in
lake sediments)

However god the relationship appears between
two variable, one needs to quantify the
correlation strength (note: impressions of
strength are subjective and will be influenced by
axis scaling).

Calculation of Correlation Coefficient
To calculate the correlation coefficient, one needs
three different sums of squares:

A. Sum of squares for variable X. This statistics
quantifies the spread of variable X. Its formula
is:

† 

SSXX = (xi - x)2

i=1

n

Â

For the illustrative data in Table 1 above, n = 20; 

† 

x
= 2.9 billion humans; SSXX = (0.9 - 2.9)2 + (1 - 2.9)2

+ … + (6.1 - 2.9)2 = 54.0

B. Sum of squares for variable Y. This statistics
quantifies the spread of variable Y. Its formula
is:

† 

SSYY = (yi - y)2

i=1

n

Â

For the illustrative data in Table 1 above 

† 

y  = 315.0
ppm CO2; SSYY = (279.7 – 315.0)2 + (283.8 – 315.0)2

+ … + (369.4 - 315.0)2 = 14246.5

C. Sum of the cross-products. This statistics is
analogous to the other sums of squares except
that it quantifies the extent to which the two
variables go together or apart. Its formula is:

† 

SSXY = (xi - x)
i=1

n

Â (yi - y)
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For the illustrative data in Table 1 above, SSXY =
(0.9 - 2.9)*(279.7 – 315.0) + (1 - 2.9)*(283.8 –
315.0) + … + (6.1 - 2.9)*(369.4 - 315.0) = 875.7

The correlation coefficient thus becomes:

† 

r =
SSXY

(SSXX )(SSYY )

For the illustrative data set:

† 

r =
875.7

(54.0)(14246.5)
= 0.9981

Here, the correlation coefficient is positive
(indicates a positive relationship) and very close to
1 (indicates a very strong relationship between the
two variables). Although the application of this
statistic seems quite straightforward, it turns out that
the correlation coefficient has no inherent value, and
in the exception of strong relationships as in the
case presented, r is hard to use to determine
correlational strength. Another statistics is much
more useful: the coefficient of determination. The
coefficient of determination is he square of the
correlation coefficient (r2). For the illustrative data
set, r2 = (0.998)2 = 0.996. This statistic quantifies
the proportion of the variance of one variable that is
explained by the other. The illustrative coefficient
of determination of 0.99 suggests that >99% of the
variability in the global atmospheric CO2
concentrations in the last 200 years is explained by
human population growth.

D. Bivariate Linear Regression

Introduction
One must be very careful however in how the
previous statistical approach is used. It is evident
from the data that the two variables studied
(atmospheric CO2 and human population) are indeed
strongly correlated and that the variation in one
explains that of the other. But does this mean a true
functional dependency? Functional dependency
assumes that the magnitude of the dependent
variable (Y) is determined in part by the magnitude
of the independent variable (X). For example, in
studying the relationship between blood pressure
and age, it is reasonable to assume a functional
dependency, i.e. a person’s blood pressure depends
on their age (most of the time). This is not to
suggest age is the only factor responsible for
increases in blood pressure, and is not to suggest a
causal relationship is proven, but that age is one
possible determinant of blood pressure. One must
be particularly careful in interpreting
relationships (even strong ones).

In the example above, the observed relationship
between atmospheric CO2 and human population

may be used to suggest that there exists a functional
dependency between these two variables through,
for example, increased respiration of human
populations (and thus larger releases of CO2 to the
atmosphere). This, of course appears immediately as
a ludicrous statement that seems impossible to
sustain with a straight face. Indeed, although there
seems to be a functional dependency between these
two variables it is an indirect one, whereby human
population increase has lead large-scale
environmental changes such as fossil fuel
combustion and deforestation that themselves have
lead to increases fluxes of CO2 (and other gases) to
the atmosphere.

More dangerous yet is the potential for spurious
correlations, the type of strong relationship between
two variables that can be completely explained by
independent arguments rather than a true functional
dependency (we call these arguments nested
relationships). One example of such spurious
correlation is presented below. Consider the growth
of two populations in the state of Georgia: humans
and storks. One can see from Figure 5 that there
exists a strong relationship between these two
variables and by running the previous exercise one
obtains a value of 0.99 for the coefficient of
determination (r2).
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Fig. 4. Human vs. wood stork (Mycteria americana)
populations from 1970 to 2000 in the state of
Georgia. Human population data from the Georgia
Statistic System:
http://www.georgiastats.uga.edu/guide.html; Stork
population data from the USGS North American
Breeding Bird Survey: http://www.mbr-
pwrc.usgs.gov/bbs/bbs00.html)

This suggests that the variation in stork population
in the last 30 years in Georgia can explain most of
the variation in human population. In other words,
this relationship can help demonstrate that the
increase in the human population has been made
possible thanks to the increase of the stork
population in that state (which, if you believe Walt
Disney’s “Dumbo”, points to the primordial role of
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these graceful birds in bringing human babies to
their final destination…) If there is isn’t a shred of
evidence in this past argument, one must also accept
that the observed relationship is somewhat
suspicious. By all means, one might expect a very
opposite effect of increased human population (and
thus land use expansion and habitat degradation,
added to increases in contaminant releases) on stork
populations. Indeed, Stork numbers presented here
represent sightings along a predetermined transect,
which is not equivalent to a full census of the stork
population in Georgia. This might just represent an
increased effort from the surveyors. Although a true
increase in the population cannot be excluded
(maybe through conservation efforts and
reinstallation of individuals in the population). In
any extent, a “perfect” relationship does not by any
means sustain causality in the variables studied.

Linear Regression Analysis
As with correlation, regression is used to analyze
the relationship between two continuous (scale)
variables. However, regression is better suited to
study the functional dependency between factors.
Also, the “products” (output) of regression and
correlation analyses differ. Put it very simply, with
regression, you are predicting the average change in
the dependent variable Y per unit independent
variable X, whereas with correlation you are
describing the fit of the two-dimensional scatter
(spread) around a trend line. To illustrate regression,
let’s use the same illustrative example as in the
previous section (global human population vs.
atmospheric CO2).

Regression Model
The simplest functional relationship between two
variables is that of a linear relationship. Yu might
remember from algebra (see section above) that a
line is described by its intercept and slope:

y = ax + b

where y is the dependent variable, x is the
independent variable, a is the slope of the line (also
called m), and b is the intercept (where the line
crosses the Y-axis).

If all data were to fall on a straight line, drawing a
line that connects the data would be a trivial matter.
However, because we are dealing with statistical
scatter, choosing a line is not an easy matter. To
determine the best fitting line for the data set, let’s
assume:

ÿ 

† 

ˆ y  represents the predicted value of Y
ÿ a represents the slope of the line
ÿ b represents the intercept of the line

The regression equation is:

† 

ˆ y = ax + b
Because of random scatter, each data point will be a
certain distance from the line. These distances, are
called error terms or residuals. To illustrate the
principles of regression, let’s use a data set of
chemical parameters in lake sediments: aluminum
and lignin content along the depth of a sediment
profile (0-40 cm). (Lignin is a natural organic
component exclusive to vascular plants and which is
used as a tracer for terrigenous inputs to aquatic
systems).

Sediment
depth (cm)

Al
(%)

Lignin
(mg/g)

0.5 7.0 0.56
3.5 7.3 0.69
4.5 7.3 0.48
5.5 7.4 0.77
7.5 7.4 1.16
8.5 7.1 0.86
15 6.9 0.91
23 7.0 1.00
25 7.3 0.76
31 6.9 1.36
33 6.3 2.13
35 6.2 2.01
37 6.0 3.60
39 5.8 3.14

The residuals for this illustrative data set
represented by the vertical lines in Figure 5 below:

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

5.0% 5.5% 6.0% 6.5% 7.0% 7.5% 8.0%

X - Aluminum concentration (%)

Y
 -

 li
gn

in
 c

on
ce

nt
ra

tio
n 

(m
g/

g)

Fig. 5. Lignin concentrations (natural organic matter
exclusive to vascular plants) vs. aluminum
concentrations in lake sediments.
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The strategy for determining the line is to select the
intercept (b) and slope (a) that minimizes the sum of
squared residuals. This is called the least squares
line. The slope of the least squares line is given by
the equation:

† 

a =
SSXY

SSXX

Where SSXY is the sum of the cross-products and
SSXX is the sum of squares for the variable X.
(remember that formulas for these sums of squares
were presented in the previous section).

For the illustrative data, SSXY = -6.26 and SSXX =
3.89 (you should test this by calculating these two
parameters). Therefore the slope a is:

† 

a =
-6.26
3.89

= -1.61

The intercept of the line is:

† 

b = y - ax

where 

† 

y  is the average value of the variables Y, 

† 

x
is the average value of the variables X, and a is the
slope of the line. Hence for the illustrative data set,

† 

b =1.4 - (-1.61¥ 6.8) =12.5
The regression model for the illustrative data set is
therefore:

† 

ˆ y = (-1.61x) +12.5

Interpretation
In the previous section, we’ve learned how to
calculate the correlation coefficient (r) and the
coefficient of determination (r2). The correlation
coefficient for this data set is –0.91, which states
that there exists a rather strong negative relationship
between the two variables (in other words, any
increase in the independent variable, X, yields lower
values of the dependent variable, Y). The coefficient
of determination is 0.82 and states that 82% of the
variability of Y is explained by the variability of X.
To assess if this is indeed a relationship built on
functional dependency one must know something
about the system of study (and here geochemical
principles).

In short, aluminum is an abundant element in the
earth’s crust and is a predominant component of
small sized minerals operationally defined as clays
and mineralogically called aluminosilicates.
Generally, the percentage (or relative amount) of

aluminum increases inversely with respect to the
size of solid particles (i.e. sand fractions, >2mm,
will have very low amount of aluminum, whereas
clays, <2mm, will tend to have higher relative
proportions of aluminum). Lignin, an organic
biomolecule exclusive to land plants, tends to occur
in high concentrations in woody tissues and in lower
amounts in soft tissues (i.e. leaves) and small plant
fragments. In a soil, for example, very small
particles (i.e. clays) will absorb small quantities of
organic matter including small amounts of lignin
components (from plant fragments). In contrast,
large plant macro-debris will be more enriched in
lignin components (but associated with sands that
are depleted in aluminum). In any extent, the
relationship observed in the studied lake sediments
suggest that the bottom of the lake receives a
changing proportion of large sandy particles
enriched in lignin (but depleted in aluminum) and
small clayey material enriched in aluminum (but
depleted in woody fragments). This relationship is
indeed functional and points to changes in the lake’s
drainage basin that lead to variations in material
inputs to its bottom (i.e. due to variations in storm
activities or other natural or human-based process).
Hence, it becomes clear that to demonstrate the
validity of an observed correlation, one must be able
to establish some sort of functional dependency
between the variables (whether direct or indirect),
and thus know something about the system of study.

An important aspect of regression analysis, aside
from establishing a relationship, is the calculation of
the slope of the model. The slope has a direct
interpretation as the predicted change in variable Y
per unit change in the variable X. In the case of a
linear correlation, the rate of change is constant
throughout the range of the data set. For the
illustrative example above, the slope of –1.61
suggests that for every additional unit in X
(percentage of aluminum in sediments), we predict a
decrease in Y (amount of lignin in sediments) of
1.61 units. The model can also be used to predict
values for Y given a known value of X. For
examples, if we were to analyze another sediment
sample and obtained an aluminum concentration of
5.5%, the predicted lignin content would be ~3.6
mg/g. Or, we could extrapolate the relationship to y
= 0 and solve to calculate the predicted amount of
aluminum in minerals with no lignin whatsoever.
The solution of this equation is 7.71% (you should
try to solve it).

This study is by far minimal in its analysis but
should act as a primer in starting work with linear
relationships between two variables. A more in
depth approach will help develop the concepts
necessary for quantitative analyses of problem sets.



Math Primer (MPA Environmental Sciences and Policy) 35

Operations’ Reminder
Powers (Exponents)
xa x xb = x(a + b)

xaya = (xy)a

(xa)b = x(ab)

x (a/b) = bth root of (xa) = 

† 

xab

x(-a) = 

† 

1
xa

x (a - b) = 

† 

xa

xb

Logarithms
y = logb(x) if and only if x=by

also, 

† 

xy = b
logb(1) = 0
logb(b) = 1
logb(x*y) = logb(x) + logb(y)
logb(x/y) = logb(x) - logb(y)
logb(x

n) = nlogb(x)

Warning:
logb(x)*logb(y) ≠ logb(x*y)

† 

logb (x)
logb (y)

≠ logb ( x
y

)

Example:
We want to calculate y and express it in scientific
notation:

y = 175

Using common logarithms (base 10):

Log10(y) = Log10(175) = 5Log10(17)

= 5 * 1.2304

= 6.1522

Thus the answer is
y = 106.1522

But this is not very meaningful. It is better to
express this as:

100.1522 * 106

= 1.42.106

(of course, calculators can give you 175 directly in
scientific notation, but it’s better to know how this
number can be derived).

Natural Logarithms (Ln)
The constant e (occasionally called Napier's
constant in honor of the Scottish mathematician
who introduced logarithms) is an infinite decimal.
This constant is the base of the natural logarithm
and is approximately equal to 2.71828... (no precise
decimal fraction can be given, as e is an irrational
number; e = 2.71828 18284 59045 23536 02874…)

e can also be written as the infinite series

eln(x) = x      for all positive x and
lnex = x      for all real x
lne = 1

Initially, it seems that the base-10 would be more
"natural" than base e. One reason we call ln(x)
"natural" is that expressions in which the unknown
variable appears as the exponent of e occur much
more often than exponents of 10 (because of the
"natural" properties of the exponential function
which allow to describe growth and decay
behaviors), and so the natural logarithm is more
useful in practice

Example:
To illustrate just one reason for its use, let’s assume
that a sum P (the original principal you invest) earns
interest at a rate r (% per annum). If this interest is
NOT compounded continuously and calculated at
the end of each year. Assuming we have a principal
of $110 and a 12% annual interest, after one year
the total amount available is the sum of the principal
and its interest (1 + r), or $112. However, by
compounding the interest quaterly, we have a factor
of (1 + r/4)4, and the total available at the end of the
year is: $112.55. In other words, we are getting an
extra $0.55 by compounding quaterly.
Compounding monthly (12 times), we would get an
extra $0.68, and $0.73 by compounding weekly
(you should try this out). As the compounding
events tend to • the amount will increase by a
factor of er. So, with a interest rate of 12%, with
continuous compounding, the principal grows by
e0.12 and yields $112.75 at the end of one year.
Uncontrolled bacterial growth is similar to
continuous compound interest.
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Computing Factorials

The factorial of a non-negative integer n, written as
n!, is defined as follows:

n! = 1 x 2 x 3 x ….. x n (when n >1)

0! is always equal to 1.

A few examples below should make the
computation of a factorial clearer.

Examples of factorial computations:

a) 0! = 1
b) 1! = 1
c) 2! = 1 x 2 = 2
d) 3! = 1 x 2 x 3 = 6
e) 5! = 5 x 4 x 3 x 2 x 1 = 120
f) 10! = 10 x 9 x 8 x 7 x 6 x 5 x 4 x 3 x 2 x

1 =  3,628,800

You will need to know how to compute factorials
for your quantitative methods courses. Specifically,
you will use factorials to compute probability
distributions for binomial random variables (note:
binary random variables are variables that can have
only one of two values – for example, a success or a
failure).

An example of a binary random variable is whether
a graduating MPA student is offered a job after they
apply for an open position. In this case, the variable
“hire” would be a binary random variable because it
can only have two values (0 = not hired and 1 =
hired). You will learn more about computing
probability distributions of binary random variables
during the fall and spring semester.

Symbols and Conversion Tables
MATHEMATICAL SYMBOLS

= equal ± plus or minus (i.e. 11±2 is the range of real
numbers between 9 and 13)

≡ identical to µ proportional to

≈ or @ approximately equal to

† 

xi
i=1

n

Â  sum of the values of x from x1 to xn

≠ not equal to

† 

xi
i=1

n

’  product of the values of x from x1 to xn

> greater than n! factorial of n (i.e. 4! Is 4x3x2x1 = 24)
≥ greater than or equal to % percent (or part per hundred.)
>> much greater than ‰ per mil (or part per thousand)
< less than ppm part per million (i.e. mg per kg)

£ less than or equal to ppm(v) part per million by volume (i.e. mg per
m3)

<< much less than ppb part per billion (i.e. ng per kg)
• infinity a:b the ratio of a to b
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Multiples and Submultiples
Number Scientific Notation Name Common Prefixes

1,000,000,000,000 1012 trillion tera
1,000,000,000 109 billion giga

1,000,000 106 million mega
1,000 103 thousand kilo
100 102 hundred hecto
10 101 ten deka
1 100 one --

0.1 10-1 tenth deci
0.01 10-2 hundredth centi
0.001 10-3 thousandth milli

0.000001 10-6 millionth micro
0.000000001 10-9 billionth nano

0.000000000001 10-12 trillionth pico

To add or subtract two numbers written in scientific notation, first make sure that both are raised to the
same power of ten.

Example:  2.5.105 + 5.104 = 2.5.105 + 0.5.105 = 3.0.105

To multiply two numbers written in scientific notation, multiply the first part of both numbers together
and then sum up their respective power.

Example:  2.5.105 x 5.104 = (2.5.0.5).105+4 = 1.25.109

To divide two numbers written in scientific notation, divide the first part of both numbers together and
then subtract their respective power.

Example:  2.5.105 ÷ 5.104 = (2.5÷0.5).105-4 = 5.101 (which is actually 50)

LENGTH
in ft mi cm m km

1 inch (in) 1 0.083 1.58.10-5 2.54 0.0254 2.54.10-5

1 foot (ft) 12 1 1.89.10-4 30.48 0.3048 --
1 mile (mi) 63.36 5.28 1 160,934 1,609 1.609

1 centimeter (cm) 0.394 0.0328 6.20.10-6 1 0.01 1.0.10-5

1 meter (m) 39.37 3.281 6.2.10-4 100 1 0.001
1kilometer (km) 39.37 3,281 0.6214 100,000 1000 1

AREA
in2 ft2 mi2 cm2 m2 km2

1 in2 1 6.944.10-3 2.49.10-10 6.4516 6.45 e-4 6.45.10-10

1 ft2 144 1 3.59.10-8 929 0.0929 9.29.10-8

1 mi2 4.01.109 2.79.107 1 2.59e10 259 2,590
1 cm2 0.155 1.07e-3 3.86e-11 1 1.0e-4 1.0.10-10

1 m2 1,550 10.764 3.86e-7 10,000 1 1.0.10-6

1 km2 1.55.109 1.07.107 0.3861 1.1010 1,000,000 1
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VOLUME
in3 ft3 yd3 m3 qt liter barrel gal(U.S)

1 in3 1 5.79.10-4 2.14.10-5 1.64.10-5 1.73.10-2 0.02 -- 4.33.10-3

1 ft3 1,728 1 3.70e-3 0.0283 29.922 28.3 -- 7.48
1 yd3 46656 27 1 0.76 807.89 764.55 -- 201.97
1 m3 61,020 35.315 1.307 1 -- 1,000 -- --

1 quart (qt) 57.75 3.34.10-2 1.24.10-3 9.46.10-4 1 0.95 -- 0.25
1 liter (l) 61.02 3.53.10-2 1.31.10-3 1.0.10-3 1.06 1 -- 0.2642

1 barrel (oil) -- -- -- -- 168 159.6 1 42
1 gallon (U.S) 231 0.13 4.95.10-3 3.78.10-3 4 3.785 0.02 1

MASS AND WEIGHT
1 pound 1 gram 1 short pound 1 long ton

453.6 grams 0.0353 ounce 2000 pounds 2240 pounds
0.4536 Kg 0.0022 pound 907.2 kilograms 1008 kilograms
16 ounces

1 metric ton 1 kilogram
2205 pounds 2.205 pounds

1000 kilograms

TEMPERATURE
Fahrenheit to Celsius °F = (

† 

9
5 x °C) + 32

Celsius to Fahrenheit °C = 
9

5 x (°F – 32)

Kelvin to Celsius °K = °C + 273
Celsius to Kelvin °C = °K - 273
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