\qquad Date: \qquad

$$
y=x^{3}-3 x^{2}-24 x+5
$$

a. Using the definitions below, find the local maximum in the equation above.
b. Similarly, find the local minimum in the same equation.
c. Using Excel, graph the equation.

Definition of a critical point: a critical point on $f(x)$ occurs at x_{0} if and only if either $f\left(x_{0}\right)$ is zero or the derivative doesn't exist.

Definition of a local maxima: A function $f(x)$ has a local maximum at x_{0} if and only if there exists some interval I containing x_{0} such that $f\left(x_{0}\right) \geq f(x)$ for all x in I.

Definition of a local minima: A function $f(x)$ has a local minimum at x 0 if and only if there exists some interval I containing x_{0} such that $f\left(x_{0}\right) \leq f(x)$ for all x in I.

The first derivative test for local extrema: If $f(x)$ is increasing $(f(x)>0)$ for all x in some interval (a, x_{0}] and $f(x)$ is decreasing $\left(f^{\prime}(x)<0\right)$ for all x in some interval $\left[x_{0}, \mathrm{~b}\right)$, then $\mathrm{f}(\mathrm{x})$ has a local maximum at x 0 . If $f(x)$ is decreasing $(f(x)<0)$ for all x in some interval (a, $\left.x_{0}\right]$ and $f(x)$ is increasing $(f(x)>0$) for all x in some interval [x_{0}, b), then $f(x)$ has a local minimum at x_{0}.

The second derivative test for local extrema: If $f\left(x_{0}\right)=0$ and $f^{\prime}\left(x_{0}\right)>0$, then $f(x)$ has a local minimum at x_{0}. If $f\left(x_{0}\right)=0$ and $f^{\prime}\left(x_{0}\right)<0$, then $f(x)$ has a local maximum at x_{0}.

