Name: Date:

1)
$$y = x^3 - 3x^2 - 24x + 5$$

- a. Using the definitions below, find the local maximum in the equation above.
- b. Similarly, find the local minimum in the same equation.
- c. Using Excel, graph the equation.

Definition of a critical point: a critical point on f(x) occurs at x_0 if and only if either $f'(x_0)$ is zero or the derivative doesn't exist.

Definition of a local maxima: A function f(x) has a local maximum at x_0 if and only if there exists some interval I containing x_0 such that $f(x_0) \ge f(x)$ for all x in I.

Definition of a local minima: A function f(x) has a local minimum at x0 if and only if there exists some interval I containing x_0 such that $f(x_0) \le f(x)$ for all x in I.

The first derivative test for local extrema: If f(x) is increasing (f(x) > 0) for all x in some interval $(a, x_0]$ and f(x) is decreasing (f(x) < 0) for all x in some interval $[x_0, b)$, then f(x) has a local maximum at x0. If f(x) is decreasing (f'(x) < 0) for all x in some interval $[x_0, b)$, then f(x) has a local maximum at x_0 . If f(x) > 0 for all x in some interval $[x_0, b)$, then f(x) has a local minimum at x_0 .

The second derivative test for local extrema: If $f'(x_0) = 0$ and $f''(x_0) > 0$, then f(x) has a local minimum at x_0 . If $f'(x_0) = 0$ and $f''(x_0) < 0$, then f(x) has a local maximum at x_0 .