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We study the statistical properties of a variety of diverse real-world
networks. We present evidence of the occurrence of three classes
of small-world networks: (a) scale-free networks, characterized by
a vertex connectivity distribution that decays as a power law; (b)
broad-scale networks, characterized by a connectivity distribution
that has a power law regime followed by a sharp cutoff; and (c)
single-scale networks, characterized by a connectivity distribution
with a fast decaying tail. Moreover, we note for the classes of
broad-scale and single-scale networks that there are constraints
limiting the addition of new links. Our results suggest that the
nature of such constraints may be the controlling factor for the
emergence of different classes of networks.

D isordered networks, such as small-world networks are the
focus of recent interest because of their potential as models

for the interaction networks of complex systems (1–7). Specifi-
cally, neither random networks nor regular lattices seem to be an
adequate framework within which to study ‘‘real-world’’ complex
systems (8) such as chemical-reaction networks (9), neuronal
networks (2), food webs (10–12), social networks (13, 14),
scientific-collaboration networks (15), and computer networks
(4, 16–19).

Small-world networks (2), which emerge as the result of
randomly replacing a fraction P of the links of a d dimensional
lattice with new random links, interpolate between the two
limiting cases of a regular lattice (P 5 0) and a random graph
(P 5 1). A small-world network is characterized by the following
properties: (i) the local neighborhood is preserved (as for regular
lattices; ref. 2); and (ii) the diameter of the network, quantified
by average shortest distance between two vertices (20), increases
logarithmically with the number of vertices n (as for random
graphs; ref. 21). The latter property gives the name small-world
to these networks, because it is possible to connect any
two vertices in the network through just a few links, and the
local connectivity would suggest the network to be of finite
dimensionality.

The structure of small-world networks and of real networks
has been probed through the calculation of their diameter as a
function of network size (2). In particular, networks such as (a)
the electric power grid for Southern California, (b) the network
of movie-actor collaborations, and (c) the neuronal network of
the worm Caenorhabditis elegans seem to be small-world net-
works (2). Further, it was proposed (5) that these three networks
(a–c) as well as the world-wide web (4) and the network of
citations of scientific papers (22, 23) are scale-free—that is, they
have a distribution of connectivities that decays with a power law
tail.

Scale-free networks emerge in the context of a growing
network in which new vertices connect preferentially to the more
highly connected vertices in the network (5). Scale-free networks
are also small-world networks, because (i) they have clustering
coefficients much larger than random networks (2) and (ii)
their diameter increases logarithmically with the number of
vertices n (5).

Herein, we address the question of the conditions under which
disordered networks are scale-free through the analysis of
several networks in social, economic, technological, biological,
and physical systems. We identify a number of systems for which
there is a single scale for the connectivity of the vertices. For all

these networks, there are constraints limiting the addition of new
links. Our results suggest that such constraints may be the
controlling factor for the emergence of scale-free networks.

Empirical Results
First, we consider two examples of technological and economic
networks: (i) the electric power grid of Southern California (2),
the vertices being generators, transformers, and substations and
the links being high-voltage transmission lines; and (ii) the
network of world airports (24), the vertices being the airports and
the links being nonstop connections. For the case of the airport
network, we have access to data on number of passengers in
transit and of cargo leaving or arriving at the airport, instead of
data on the number of distinct connections. Working under some
reasonable assumptions,‡ one can expect that the number of
distinct connections from a major airports is proportional to the
number of passengers in transit through that airport, making the
two examples, i and ii, comparable. Fig. 1 shows the connectivity
distribution for these two examples. It is visually apparent that
neither case has a power law regime and that both have
exponentially decaying tails, implying that there is a single scale
for the connectivity k.

Second, we consider three examples of ‘‘social’’ networks: (iii)
the movie-actor network (2), the links in this network indicating
that the two actors were cast at least once in the same movie; (iv)
the acquaintance network of Mormons (25), the vertices being
43 Utah Mormons and the number of links the number of other
Mormons they know; and (v) the friendship network of 417
Madison Junior High School students (26). These three exam-
ples describe apparently distinct types of social networks with
very different sample sizes. In fact it can be argued that the
network of movie-actor collaborations is not really a social
network but is instead an economic network. However, because
it was considered in other publications (1, 2, 5) as a social
network, we classify it similarly here. We feel that the acquain-
tance and friendship networks may be better proxies of real
social networks and, as such, expect similar results from the
analysis of both networks. Fig. 2 shows the connectivity distri-
bution for these social networks. The scale-free (power law)
behavior of the movie-actor network (5) is truncated by an
exponential tail. In contrast, the network of acquaintances of the
Utah Mormons and the friendship network of the high school
students display no power law regime, but instead we find results
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‡To be able to compare the two types of distributions, one must make two assumptions. The
first assumption is that there is a typical number of passengers per flight. This assumption
is reasonable, because the number of seats in airplanes does not follow a power law
distribution. The second assumption is that there is a typical number of flights per day
between two cities. This assumption is also reasonable, because at most there will be about
20 flights per day and per airline between any two cities; thus, the distribution of number
of flights per day between two cities is bounded.
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consistent with a Gaussian distribution of connectivities, indi-
cating the existence of a single scale for k.§

Third, we consider two examples of networks from the natural
sciences: (vi) the neuronal network of the worm C. elegans (2, 27,
28), the vertices being the individual neurons and the links being
connections between neurons; and (vii) the conformation space
of a lattice polymer chain (29), the vertices being the possible
conformations of the polymer chain and the links being the
possibility of connecting two conformations through local move-

ments of the chain (29). The conformation space of a linear
polymer chain seems to be well described (29) by the small-world
networks of ref. 2. Fig. 3 a and b shows for C. elegans the
cumulative distribution of k for both incoming and outgoing
neuronal links. The tails of both distributions are well approx-
imated by exponential decays, consistent with a single scale for
the connectivities. For the network of conformations of a
polymer chain, the connectivity follows a binomial distribution,
which converges to the Gaussian (29); thus, we also find a single
scale for the connectivity of the vertices (Fig. 3c).

Discussion
Thus far, we presented empirical evidence for the occurrence of
three structural classes of small-world networks: (a) scale-free
networks, characterized by a connectivity distribution with a tail
that decays as a power law (4, 22, 23); (b) broad-scale or
truncated scale-free networks, characterized by a connectivity
distribution that has a power law regime followed by a sharp

§Note that even though the sample sizes of these two networks is rather small, the
agreement with the Gaussian distribution is very good, suggesting that our results are
reliable. Moreover, a power law distribution would curve the opposite way in the semilog
plot.

Fig. 1. Technological and economic networks. (a) Linear-log plot of the
cumulative distribution of connectivities for the electric power grid of South-
ern California (2). For this type of plot, the distribution falls on a straight line,
indicating an exponential decay of the distribution of connectivities. The full
line, which is an exponential fit to the data, displays good agreement with the
data. (b) Log-log plot of the cumulative distribution of connectivities for the
electric power grid of Southern California. If the distribution would have a
power law tail then it would fall on a straight line in a log-log plot. Clearly, the
data reject the hypothesis of power law distribution for the connectivity. (c)
Linear-log plot of the cumulative distribution of traffic at the world’s largest
airports for two measures of traffic, cargo, and number of passengers. The
network of world airports is a small-world network; one can connect any two
airports in the network by only one to five links. To study the distribution of
connectivities of this network, we assume that, for a given airport, cargo and
number of passengers are proportional to the number of connections of that
airport with other airports. The data are consistent with a decay of the
distribution of connectivities for the network of world airports that decays
exponentially or faster. The full line is an exponential fit to the cargo data for
values of traffic between 500 and 1,500. For values of traffic larger than 1,500,
the distribution seems to decay even faster than an exponential. The long-
dashed line is an exponential to the passenger data for values of traffic
between 500 and 1,500. a.u., arbitrary units. (d) Log-log plot of the cumulative
distribution of traffic at the world’s largest airports. This plot confirms that the
tails of the distributions decay faster than a power law would.

Fig. 2. Social networks. (a) Linear-log plot of the cumulative distribution of
connectivities for the network of movie actors (2). The full line is a guide for
the eye of what an exponential decay would be. The data seem to fall faster
in the tail than they would for an exponential decay, suggesting a Gaussian
decay. Both exponential and Gaussian decays indicate that the connectivity
distribution is not scale-free. (b) Log-log plot of the cumulative distribution of
connectivities for the network of movie actors. This plot suggests that, for
values of number of collaborations between 30 and 300, the data are consis-
tent with a power law decay. The apparent exponent of this cumulative
distribution, a 2 1 ' 1.3, is consistent with the value a 5 2.3 6 0.1 reported for
the probability density function (5). For larger numbers of collaborations, the
power law decay is truncated. (c) Linear-log plot of the cumulative distribution
of connectivities for the network of acquaintances of 43 Utah Mormons (25).
The full line is the fit to the cumulative distribution of a Gaussian. The tail of
the distribution seems to fall off as a Gaussian, suggesting that there is a single
scale for the number of acquaintances in social networks. (d) Linear-log plot
of the cumulative distribution of connectivities for the friendship network of
417 high school students (26). The number of links is the number of times a
student is chosen by another student as one of hisyher two (or three) best
friends. The lines are Gaussian fits to the empirical distributions.
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cutoff, like an exponential or Gaussian decay of the tail (see
example iii); and (c) single-scale networks, characterized by a
connectivity distribution with a fast decaying tail, such as expo-
nential or Gaussian (see examples i, ii, and iv–vii).

A natural question is ‘‘what are the reasons for such a rich
range of possible structures for small-world networks?’’ To
answer this question, let us recall that preferential attachment in
growing networks gives rise to a power law distribution of
connectivities (5). However, preferential attachment can be
hindered by two classes of factors.

Aging of the vertices. This effect can be pictured for the
network of actors; in time, every actor will stop acting. For the
network, this fact implies that even a very highly connected
vertex will, eventually, stop receiving new links. The vertex is still
part of the network and contributes to network statistics, but it
no longer receives links. The aging of the vertices thus limits the
preferential attachment preventing a scale-free distribution of
connectivities.

Cost of adding links to the vertices or the limited capacity of a
vertex. This effect is exemplified by the network of world
airports: for reasons of efficiency, commercial airlines prefer to

have a small number of hubs where all routes connect. In fact,
this situation is, to a first approximation, indeed what happens
for individual airlines; however, when we consider all airlines
together, it becomes physically impossible for an airport to
become a hub to all airlines. Because of space and time con-
straints, each airport will limit the number of landingsy
departures per hour and the number of passengers in transit.
Hence, physical costs of adding links and limited capacity of a
vertex (30, 31) will limit the number of possible links attaching
to a given vertex.

Modeling. To test numerically the effect of aging and cost
constraints on the local structure of networks with preferential
attachment, we simulate the scale-free model of ref. 5 but
introduce aging and cost constraints of varying strength. In the
original scale-free model, a network grows over time by the addition
of new vertices and links. A vertex newly added to the network
randomly selects m other vertices to establish new links, with a
selection probability that increases with the number of links of
the selected vertex. This mechanism generates faster growth of
the most connected vertices—in a process identical to the city
growth model of Simon and Bonini (32)—and it is well-known
that the mechanism leads to a steady state with a power law
distribution of connectivities (33).

We generalize this model by classifying vertices into one of two
groups: active or inactive. Inactive vertices cannot receive new
links. All new vertices are created active but in time may become
inactive. We consider two types of constraints that are respon-
sible for the transition from active to inactive. In the first, which
we call ‘‘aging,’’ vertices may become inactive each time step with
a constant probability Pi. This fact implies that the time a vertex

Fig. 3. Biological and physical networks. (a) Linear-log plot of the cumulative
distribution of outgoing (i.e., connections by axons to other cells) and incom-
ing (i.e., connections by axons from other cells) connections for the neuronal
network of the worm C. elegans (27, 28). The full and long-dashed lines are
exponential fits to the distributions of outgoing and incoming connections,
respectively. The tails of the distributions seem consistent with an exponential
decay. (b) Log-log plot of the cumulative distribution of outgoing and incom-
ing connections for the neuronal network of the worm C. elegans. If the
distribution would have a power law tail, then it would fall on a straight line
in a log-log plot. The data seem to reject the hypothesis of a power law
distribution for the connectivity. (c) Linear-log plot of the probability density
function of connectivities for the network of conformations of a lattice
polymer chain (29). A simple argument suggests that the connectivities follow
a binomial distribution. The full and dashed lines are fits of a binomial
probability density function to the data for polymer chains of different
lengths. For the values of the parameters obtained in the fit, the binomial
closely resembles the Gaussian, indicating that there is a single scale for the
connectivities of the conformation space of polymers.

Fig. 4. Truncation of scale-free connectivity by adding constraints to the
model of ref. 5. (a) Effect of aging of vertices on the connectivity distribution.
We see that aging leads to a cutoff of the power law regime in the connectivity
distribution. For sufficient aging of the vertices, the power law regime disap-
pears altogether. (b) Effect of cost of adding links on the connectivity distri-
bution. Our results indicate that the cost of adding links also leads to a cutoff
of the power law regime in the connectivity distribution and that, for a
sufficiently large cost, the power law regime disappears altogether.
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may remain active decays exponentially. In the second, which we
call ‘‘cost,’’ a vertex becomes inactive when it reaches a maximum
number of links kmax. Fig. 4 shows our results for both types of
constraint. It is clear that both lead to cutoffs on the power law
decay of the tail of connectivity distribution and that, for strong
enough constraints, no power law region is visible.

Analogy with Critical Phenomena. We note that the possible dis-
tributions of connectivity of the small-world networks have an
analogy in the theory of critical phenomena (34). At the gas-
liquid critical point, the distribution of sizes of the droplets of the
gas (or of the liquid) is scale-free, as there is no free-energy cost
in their formation (34). As for the case of a scale-free network,
the size s of a droplet is power law distributed: P(s) ' s2a. As we
move away from the critical point, the appearance of a non-

negligible surface tension introduces a free-energy cost for
droplets that limits their sizes such that their distribution be-
comes broad-scale: P(s) ' s2af(syj), where j is the typical size
for which surface tension starts to be significant, and the function
f(syj) introduces a sharp cutoff for droplet sizes s . j. Far from
the critical point, the scale j becomes so small that no power law
regime is observed and the droplets become single-scale distrib-
uted: P(s) ' f(syj). Often, the distribution of sizes in this regime
is exponential or Gaussian.
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the Conformation Space of a Lattice Polymer Chain (cond-maty0004380).
30. Bonney, M. E. (1956) in Sociometry and the Science of Man, ed. Moreno, J. L.

(Beacon House, New York), pp. 275–286.
31. Moreno, J. L. (1956) Sociometry and the Science of Man (Beacon House, New

York).
32. Simon, H. A. & Bonini, C. P. (1958) Am. Econ. Rev. 48, 607–617.
33. Ijiri, Y. & Simon, H. A. (1977) Skew Distributions and the Sizes of Business Firms

(North–Holland, Amsterdam).
34. Stanley, H. E. (1971) Introduction to Phase Transitions and Critical Phenomena

(Oxford Univ. Press, Oxford).

11152 u www.pnas.org Amaral et al.


