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Networks, Dynamics, and the Small-World
Phenomenon'

Duncan J. Watts
Santa Fe Institute

The small-world phenomenon formalized in this article as the coinci-
dence of high local clustering and short global separation, is shown
to be a general feature of sparse, decentralized networks that are
neither completely ordered nor completely random. Networks of this
kind have received little attention, yet they appear to be widespread
in the social and natural sciences, as is indicated here by three dis-
tinct examples. Furthermore, small admixtures of randomness to an
otherwise ordered network can have a dramatic impact on its dy-
namical, as well as structural, properties—a feature illustrated by
a simple model of disease transmission.

INTRODUCTION

The small-world phenomenon (Milgram 1967; Pool and Kochen 1978) has
long been an object of popular fascination and anecdotal report. The expe-
rience of meeting a complete stranger with whom we have apparently
little in common and finding unexpectedly that we share a mutual ac-
quaintance is one with which most of us are familiar—“It’s a small
world!” we say. More generally, most people have at least heard of the
idea that any two individuals, selected randomly from almost anywhere
on the planet, are “connected” via a chain of no more than six intermediate
acquaintances, a notion made popular by the Broadway play (and later
movie) Six Degrees of Separation (Guare 1990).

But is this phenomenon merely the confluence of unlikely coincidence
and curious anecdote, or is it actually indicative of the underlying struc-
ture of modern social networks and, hence, not unlikely at all? Further-
more, if the small-world phenomenon does turn out to be a deep feature
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of the social world, in what other contexts can it arise (such as telecommu-
nications and neural networks), and what mechanism drives it? Finally,
does its presence in the real world have any implications for the dynamical
properties of the networks in which it occurs?

An explanation of the phenomenon, and more generally, a framework
for examining the properties of networks consisting of very many compo-
nents, is of general sociological interest: Many social metrics, such as sta-
tus (Harary 1959; Burt 1982) and power (Coleman 1973), and social pro-
cesses, such as the diffusion of innovations (Rogers 1995) and transmission
of influence (Friedkin 1990), are usefully represented in terms of networks
of relationships between social actors, be they individuals, organizations,
or nations. Indeed, the theory of social networks is one that has seen exten-
sive development over the past three decades, yielding multiple measures
both of individual significance, such as centrality (Freeman 1979, 1982;
Friedkin 1991), and of network efficiency (Yamaguchi 1994a), which may
elucidate nonobvious phenomena such as “key players” in an organization
or its optimal structure for, say, information diffusion. Frequently, how-
ever, this research assumes linear models of social processes,? such as Mar-
kov models of diffusion, and is generally applied to networks that consist
of a relatively small number of components.* While many of the measures
defined in the literature can in principle be applied to networks of arbi-
trary size and structure, the computational costs of doing so may be pro-
hibitive (such as for Freeman’s [1979] betweenness centrality), and the
benefits are at any rate unclear if the process of interest is inherently non-
linear, as is the case for information (or disease) contagion models involv-
ing threshold (Granovetter 1978; Arthur and Lane 1993) or refractory
(Murray 1993, chap. 19) effects. Hence, the problem of analyzing effi-
ciently the structure of extremely large networks (in which components
may easily number in the hundreds of thousands, or more), and modeling
the effects of structure on nonlinear dynamical processes, remains rela-
tively unexplored. This article presents one possible approach to these
very general problems by postulating a model of network formation that
is sufficiently flexible to account for a wide variety of interesting cases
(although not all cases, by any means, as will be pointed out) and that,

2“Social process” here refers to the person-to-person dynamics occurring on the net-
work. Such local dynamical models are thus distinct from global models, such as classi-
cal homogeneous mixing models of diffusion, which are generally nonlinear (see e.g.,
Yamaguchi 1994b), but which do not model the underlying network explicitly.

3 Test cases appearing in the literature typically use small numbers for ease of compu-
tation (e.g., Friedkin [1991] and Yamaguchi [1994a, 1994b] consider networks of five
and seven elements respectively) and documented empirical examples rarely exceed
0O(100) nodes.
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in turn, suggests which structural parameters are the appropriate ones to
study.

The problem of relating network structure to dynamics is then illus-
trated with a very simple model of disease spreading, which implies that
the specified structural parameters are significant in determining the dy-
namics (usually in a highly nonlinear fashion), although probably insuffi-
cient to describe it completely. It should be pointed out that networks can
affect a system’s dynamical behavior in what might be termed an active
and a passive sense; and that it is the passive sense that is investigated
here. Active implies that the network is a device to be manipulated con-
sciously for an actor’s own ends; passive implies that the network connec-
tions themselves, in concert with blind dynamical rules, determine the
global behavior of the system. The active sense has been investigated, for
example, by Granovetter (1973, 1974) in the context of finding a job and
Burt (1992) for maximizing social capital. The passive sense—with which
this article is concerned—has been explored in systems as varied as biolog-
ical oscillators (Strogatz and Stewart 1993), neural networks (Crick and
Koch 1998), genetic-control networks (Kauffman 1969), epidemiology
(Hess 1996a, 1996b; Longini 1988; Kretzschmar and Morris 1996), and
game theory (Nowak and May 1993; Herz 1994; Cohen, Riolo, and Axel-
rod 1999). Before addressing any of these questions, however, it is neces-
sary to agree on precisely what is meant by the small-world phenomenon,
what is already known about it, and why such a thing should be surprising
in the first place.

PROPERTIES OF RANDOM-CLUSTERED NETWORKS
What Is the Small-World Phenomenon?

What do we mean when we say the world is “small”? In general, there is
no precise answer, but in this article, “small” means that almost every
element of the network is somehow “close” to almost every other element,
even those that are perceived as likely to be far away.* This disjuncture
between reality and perception is what makes the small-world phenome-
non surprising to us. But why should we perceive the world to be anything
other than small in the first place? The answer to this is fourfold:

1. The network is numerically large in the sense that the world contains
n => 1 people. In the real world, % is on the order of billions.

2. The network is sparse in the sense that each person is connected to an
average of only k other people, which is, at most, on the order of thou-

* Precise definitions of “small” and “far away” require some additional terminology
that is developed below.
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sands (Kochen 1989)—hundreds of thousands of times smaller than the
population of the planet.

3. The network is decentralized in that there is no dominant central vertex
to which most other vertices are directly connected. This implies a
stronger condition than sparseness: not only must the average degree &
be much less than #, but the maximal degree k,,,, over all vertices must
also be much less than #.

4. The network is highly clustered, in that most friendship circles are
strongly overlapping. That is, we expect that many of our friends are
friends also of each other.

All four criteria are necessary for the small-world phenomenon to be
remarkable. If the world did not contain many people, then it would not
be surprising if they were all closely associated (as in a small town). If
most people knew most other people then, once again, it would not be
surprising to find that two strangers had an acquaintance in common. If
the network were highly centralized—say a star—then an obvious short
path would exist through the center of the star between all pairs of verti-
ces. Finally, if the network were not clustered—that is, if each person
chose their friends independently of any of their friends’ choices—then
it follows from random-graph theory (Bollobas 1985) that most people
would be only a few degrees of separation apart even for very large ».°

But are these criteria satisfied by the real world? Given that the popula-
tion of the planet is several billion and that even the most generous esti-
mates of how many acquaintances an average person can have (Kochen
1989) is only a few thousand, then the first two criteria are likely to be
satisfied. The last two conditions are harder to be sure of and certainly
harder to measure, but they also seem quite reasonable in the light of
everyday experience. Some people are clearly more significant players
than others, but even the most gregarious individuals are constrained by
time and energy to know only a tiny fraction of the entire population.
What significance these individuals have must be due to other more subtle
and interesting reasons. Finally, while it might be difficult to determine
in practice how many of a given person’s friends are also friends with
each other, and even more difficult to measure this for a large population,
common sense tells us that whatever this fraction is, it is much larger than
that which we would expect for a randomly connected network.®

The first evidence that the world might indeed be small was presented
over 30 years ago by the psychologist Stanley Milgram (1967). Milgram

$In fact, a random graph is a close approximation to the smallest possible graph for
any given n and k& (where k,,, << # and the variance in k is not too large).

¢ To be more explicit, if the world were randomly connected, then one’s acquaintances
would be just as likely to come from a different country, occupation, and socioeco-
nomic class as one’s own. Clearly this is not the case in real life.
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initiated a number of chain letters with sources in Kansas and Nebraska,
to be sent to one of two targets in Boston. Each source was given the
name of the target and some demographic information about them but
was instructed that they could only send the letter to someone they knew
by first name. If they did not know the target directly (a remote possibil-
ity), the idea was to send it to whichever of their friends they considered
was most likely to. This procedure was then to be repeated, generating a
chain of recipients that either reached the target or else petered out due to
apathy. Of the chains that did complete, Milgram found that the median
number of links in the chain was about six, thus giving rise to the famous
phrase, “six degrees of separation.” A later work of Milgram’s (Korte and
Milgram 1970) found similar results for senders and recipients in different
racial subgroups, thus bolstering the claim that the world was not just
small within particular socioeconomic categories but was, perhaps, small
universally.

Although the first theoretical examination of the small-world phenome-
non, by Pool and Kochen (1978), did not appear in published form until
well after Milgram’s experiment, the ideas had been in circulation for
some 10 years beforehand. Pool and Kochen posed the problem in terms
of the probability (p;) that two randomly selected elements of a network
would be connected via a shortest path consisting of i intermediaries.
They calculated expected values of p; under a variety of assumptions
about local network structure and stratification. They concluded, as had
Milgram, that the world was probably a small one, in the sense that ran-
domly selected pairs could generally be connected by chains of only a few
intermediaries. However, their assumptions concerning network structure
and the independence of connections were so restrictive that they declined
to place much weight on their hypothesis. Little progress has been made
on this work since, and Pool and Kochen’s conclusions remain essentially
unchanged (Kochen 1989).

Another starting point for theoretical investigation of the small-world
phenomenon was the study of random-biased nets, developed in the 1950s
and 1960s by Anotol Rapoport and his colleagues at the University of
Chicago. Motivated by the desire to understand the spread of infectious
diseases, Solomonoff and Rapoport (1951) calculated the expected fraction
of a randomly mixed population to be infected by a small initially infected
seed. Rapoport then determined the corresponding fractions to be infected
in populations where network connections exhibited increasing levels of
local redundancy due to effects such as homophily, symmetry of edges,
and triad-closure bias (Rapoport 1953a, 19535, 1957, 1963; Foster, Rapo-
port, and Orwant 1963). More sophisticated approximations were devel-
oped subsequently by Fararo and Sunshine (1964) and, later, Skvoretz
(1985) to account for differentiation of ties as well as vertices. However,
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as was the case with Pool and Kochen, all these approximations focused
on altering the local structure of the network and so showed only that
significant changes in global structure will result from correspondingly
significant changes in local structure. This statement is not contradicted
here. Rather, what is new is that equally significant changes in global
structure can result from changes in local structure that are so minute
as to be effectively undetectable at the local level. This is an important
distinction, as it is at the local level—and only at the local level—that
individuals in a network make measurements.

Formalization of the Small-World Phenomenon

In order to make the requisite notions precise, some definitions are bor-
rowed from graph theory. For simplicity, the networks considered here
will be represented as connected graphs, consisting solely of undifferenti-
ated vertices and unweighted, undirected edges.” All graphs must also
satisfy the sparseness conditions specified above.

The first statistic of interest, for a given graph, is the characteristic
path length (L), defined here as the average number of edges that must
be traversed in the shortest path between any two pairs of vertices in the
graph.? In terms of Milgram’s experiment, L would be the chain length
averaged over all possible sources in the network azd all possible targets.
L then is a measure of the global structure of the graph (because, in gen-
eral, determining the shortest path length between any two vertices re-
quires information about the entire graph). By contrast, the clustering
coefficient (C) is a measure of the local graph structure. Specifically, if a
vertex v has k, immediate neighbors, then this neighborhood defines a
subgraph in which at most &,(k, — 1)/2 edges can exist (if the neighbor-
hood is fully connected). C, is then the fraction of this maximum that is
realized in v’s actual neighborhood, and C is this fraction averaged over
all vertices in the graph.’ Equivalently, C can be regarded as the probabil-

"'These assumptions are unrealistic in general, as many networks of interest in both
the social and natural sciences are composed of weighted and directed relationships.
However, generalizations of the resulting graph statistics to account for these added
complexities—although straightforward in principle—may depend on the particular
application at hand. Therefore, for the purpose of constructing a broadly relevant
framework, undirected, unweighted graphs are the natural starting point.

8 Variants of L have appeared in other contexts as diverse as the status of individuals
in an organization (Harary 1959), the floor plans of buildings (March and Steadman
1971), the efficiency of communications networks (Chung 1986), and even the proper-
ties of chemical compounds (Wiener 1947; Rouvray 1986).

° Local clustering, or variants thereof, has also appeared in the literature as a measure
of network structure, originally in Davis (1967).
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ity that two vertices (#, v) will be connected, given that each is also con-
nected to a “mutual friend” (w).

All the graphs considered in this article will be characterized in terms
of these two statistics. But in order to contextualize the results—to decide,
in effect, what is “small” and what is “large,” what counts as “clustered”
and what does not—it is necessary to determine the ranges over which L
and C can vary. Three constraints are imposed upon this exercise:

1. The population size (») is fixed.

2. The average degree k of the vertices is also fixed such that the graph is
sparse (¢ << n) but sufficiently dense to have a wide range of possible
structures (& =>> 1).°

3. The graph must be connected in the sense that any vertex can be reached
from any other vertex by traversing a finite number of edges.

Fixing # and % enables valid comparisons to be made between many
different graph structures. Clearly, the largest value that C can attain for
any connected graph is C = 1, for a complete graph (¢ = n — 1). Con-
versely, the minimum conceivable value of C is C = 0 for an empty graph
(¢ = 0). These two graphs also have extremal length properties. This,
however, is not a very instructive comparison, as it is obvious that cluster-
ing and length will change as more and more edges are added to any
graph. A more interesting question is how these statistics can change sim-
ply by rearranging a fixed number of edges among a fixed number of
vertices. The sparseness conditions focus our attention on the most inter-
esting terrain from the perspective of a wide range of applications in both
the social and natural sciences. That is, the network is sufficiently well
connected to admit rich structure, yet each element is confined to operate
within a local environment that encompasses only a tiny fraction of the
entire system. Finally, by insisting that all graphs be connected, L is guar-
anteed to be a truly global statistic. Hence, comparisons of characteristic
path length are valid comparisons of global structure. Bearing in mind
these conditions, the following questions present themselves:

1. What is the most clustered graph possible, and what is its characteristic
path length?

10 Because, in the models considered here, fluctuations in vertex degree (k,) are roughly
normally distributed around k, this condition becomes in practice the more strict con-
dition mentioned earlier: (k.. << 7). This is a qualitatively stronger constraint than
k << n because it precludes not only densely connected graphs, but also star-like
graphs, which have L =~ 2, regardless of %, by virtue of one (or a few) highly centralized
vertices. That star graphs are ignored in this analysis is not to imply that they are
uninteresting, simply that our concern here is with decentralized graphs—a reason-
able restriction if one considers large enough # (where no one member could possibly
know all others).
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2. What graph has the lowest possible characteristic path length, and what
is its clustering coefficient?

3. What do these results imply about the relationship between the clustering
coefficient and characteristic path length of a sparse graph?

Turning first to clustering, a significant insight is that, although a con-
nected graph can only attain the maximal value of C = 1 when 2 = (n —
1), even a very sparse graph may have a clustering coefficient that is, in
practice, indistinguishable from the complete case. The most clustered,
sparse graph possible is what might be termed the caveman graph, which
consists of #n/(k + 1) isolated cliques or “caves”™ that is, clusters of (¢ +
1) vertices within which all vertices are connected to all others but be-
tween which no edges exist at all. It is easy to see that this graph has C
= 1, on a par with a complete graph. However, it fails another required
condition—that all graphs must be connected. Fortunately, global connec-
tivity is an easy property to achieve in this case, simply by extracting one
edge from each clique and using it to connect to a neighboring clique such
that all cliques eventually form a single, unbroken loop. This connected
caveman grvaph (fig. 1) can be shown to have a clustering coefficient of

Comman = 1 = 2, )
(k* — 1)
which approaches 1 as & becomes sufficiently large (without violating & <<
n, a detailed derivation of equation 1 is given in Watts [1999, chap. 4]).!!
One can also calculate the corresponding characteristic path length for
large » and & (see Watts 1999, chap. 4):

~_ P
26 + 1)

Note that, for » > &, L must necessarily be large and also increases lin-
early with increasing ». Hence, the connected caveman graph can be used
as a benchmark for a “large, highly clustered graph.”?

@)

caveman

! The connected caveman graph does not, in fact, have the highest possible clustering
coefficient for fixed » and k. For instance, the last edge required to complete the ring in
figure 1 is not required for connectivity and so can remain in its clique, thus marginally
increasing C. Other even more clustered constructions may also be possible. Neverthe-
less, no graph can be constructed whose clustering exceeds that of the connected cave-
man graph by more than O(1/k?), which becomes vanishingly small as % increases.

' Of course, sparse, connected networks with larger L can be constructed (trivially,
by severing one of the between-cluster edges to form a line of clusters instead of a
ring). Such changes, however, do not affect the essential structural properties of the
network—that is, its linear scaling properties—and so are not of concern here. Other,
more elaborate constructions (such as a large, dense cluster trailed by a long line of
vertices) are ruled out by the same regularity requirement that excluded star-like
graphs from consideration. Hence, within the bounds of the model, the connected
caveman graph is a plausible (albeit approximate) upper limit for L.
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F1G6. 1.—Schematic of the connected caveman construction

At the other extreme, no general, realizable structure can be shown to
exhibit minimal characteristic path length for arbitrary » and & (Cerf et
al. 1974; Bollobas 1985), but a good approximation to the theoretical lower
bound is realized by a random graph (Bollobas 1985), where k#/2 out of
all possible #(z — 1)/2, edges are chosen at random and with equal proba-
bility. Precise formulas do not exist for L and C of a random graph, but
in the limits of large # and k, the corresponding asymptotic approxima-
tions are’®

5 For an argument justifying the approximation for L, see Bollobas (1985) and Bollo-
bas and Chung (1988). The asymptotic expression for C,,,4, can easily be derived by
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In(n)
random ~ Ty 3
d In(e) &)
and
k
Cmndom ~ . (4)
n

Note that not only is L,smgom << L gyemas fOr any z => 1, but that the scaling
of L,umaom is logarithmic with respect to % instead of linear. Hence, as %
becomes larger, the discrepancy between the two extremes in length be-
comes increasingly pronounced (linearly in 7). Note also that the sparse-
graph condition (¢ << %) implies that C,,,4. is very small. Hence (recalling
the probabilistic interpretation of the clustering coefficient), C can be
thought of as a simple measure of order in a graph—graphs with C >
k/n (like the connected caveman graph) are considered locally ordered
(in the sense that vertices with at least one mutually adjacent vertex are
likely to be themselves adjacent), and random graphs are, naturally, dis-
ordered.

The intuition that one might draw from these results is that highly clus-
tered or locally ordered graphs necessarily have long characteristic path
lengths, and conversely, graphs with short characteristic path lengths
have clustering that is vanishingly small in the limit of large #. This is a
reasonable intuition but is at odds with the (so far anecdotal) claim that
the world can be small and still be highly clustered. In the absence of
definitive data for the whole world, an alternative test of the small-world
problem is to determine the minimum conditions that are both necessary
and sufficient for the world to be small. The approach adopted here is to
introduce a family of graphs that interpolates approximately between the
two extremes discussed above and then to examine the intermediate re-
gion for evidence of small-world effects.

A Theory of Length Contraction in Sparse Networks

For this purpose, it is natural to consider a model that captures, in some
abstract sense, the formation of social connections. A number of social
network theorists have utilized the concept of a “social space” in which
people exist as points separated by distances that can be measured ac-
cording to some appropriately defined metric (see, e.g., Davidson 1983).
Unfortunately, this approach often runs into treacherous waters due to

considering that a neighbor of any given vertex (v) has an expected probability (&, —
1)/n of being adjacent to another vertex («) in v’s neighborhood.
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the inherent difficulty both of characterizing the space (which is all but
unknown) and defining the metric (equally so). The following three as-
sumptions avoid these difficulties:

1. All networks can be represented solely in terms of the connections be-
tween their elements, assuming that whatever combination of factors
makes people more or less likely to associate with each other is accounted
for by the distribution of those associations that actually form.

2. All connections are symmetric and of equal significance. That is, a defi-
nition of what is required in order to “know” someone is defined such
that either two people know each other or they do not.*

3. The likelihood of a new connection being created is determined, to some
variable extent, by the already existing pattern of connections.

Exactly how existing connections determine new ones is a big part of
the mystery. One might imagine a world in which people only become
acquainted through introduction by one or more mutual friends. It is easy
to see that a mechanism such as this leads inevitably to a locally ordered
world (in the sense of C = k/n), the extreme case being the caveman
world. At the other extreme, one might also imagine a world in which
new friendships are made autonomously and at random, without regard
for current friendships.!® The end product of this tie formation process is
naturally a random graph. Of course, the real world lies somewhere be-
tween these two extremes but precisely where is anybody’s guess. Hence,
rather than assuming some specific functional relationship between cur-
rent and future friendships, let us examine a whole universe of possible
“worlds” that lie between the ordered and random extremes. One way to
do this in a precise and explicit fashion is through a graph construction
algorithm that embodies the following features (also shown graphically
in fig. 2):

1. At the ordered extreme, the propensity of two unrelated people (meaning
they share no mutual friends) to be connected is very small. Once they
have just one friend in common, however, their propensity to be ac-
quainted immediately becomes very high and stays that way regardless
of how many additional mutual friends they may have. In worlds like
this one, it is almost a certainty that the only people anyone will ever
connect to are those with whom they share at least one mutual friend.
So, plotting “propensity to become friends” against “fraction of current
mutual friends,” the propensity starts near zero, rises very rapidly to some
relatively large number (which can be normalized to one), and then pla-
teaus.

%4 Unlike the one-way connection that often exists between, e.g., a professor and a
student, or a celebrity and a fan.

5 We may be seeing the beginnings of such a world already in the proliferation of
Internet “chat lines,” where complete strangers can meet, interact, and sometimes even
end up marrying.
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Ordered Extreme

Propensity to become friends
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0 0.2 0.4 0.6 0.8
Mutual friends as a fraction of total friends

-

F1G. 2.—Family of functions representing the propensity of strangers to meet,
given the fraction of the friends that they currently share.

2. Atthe random extreme, no one has much propensity to connect to anyone
in particular. In this sort of world, the “propensity versus mutual friends”
curve remains near zero up until the point where all friends are mutual
friends.*

3. In between these two extremes, the propensity curve can take any one
of an infinite number of intermediate forms, specified by a single, tunable
parameter, where it is important only that the dependency be smooth
and monotonically increasing with respect to increasing mutual friends.
These conditions are satisfied by the following construction:

1 mi; =k
m,”j ¢
R, = ~k— 1—=-p)+p k>m;;>0, 5)
p m;; =0

where R;; is a measure of vertex i’s propensity to connect to vertex j
(zero if they are already connected), m,; is the number of vertices that are
adjacent both to i and j, & is the average degree of the graph, p is a baseline

' The rapid jump from near zero to near one in fig. 2 is necessitated by continuity
conditions but can be rationalized in modeling terms by considering that in such a
situation the two parties must have all their friends in common, in which case it is
reasonable to assume that they cannot avoid meeting.
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propensity for an edge (i, ) to exist (set at p = 10719, and « is a tunable
parameter, 0 < O < o0.!®

Numerical simulation.—Equation (5) is, in principle, an abstract repre-
sentation of a graph or rather, for each value of o, an enormous (but finite)
number of potential graphs that share certain statistical characteristics.
However, it seems unlikely that the properties of these graphs, and how
those properties vary with o, can be derived in any precise analytical
sense. This is an important point, because a great deal of work in graph
theory is analytical. However, analytical approaches are generally con-
fined to cases where either # is small and the rules for constructing the
graph are strictly deterministic or # is so large that it can be treated as
infinite and the rules are strictly random. Both of these extremes exhibit
certain properties that simplify the situation, thus enabling analytical de-
scriptions. The case presented by equation (5), however, falls squarely into
the messy no-man’s-land between these two extremes: # is large but not
infinite, and the rule for constructing edges is partly deterministic and
partly random, where even the balance between determinism and ran-
domness varies as o changes. The only manner in which such a model can
be analyzed is through a rigorous process of computer-based, numerical
simulation.' Adopting this approach, equation (5) now forms the basis for
a construction algorithm,? which builds a graph of specified #, k, and o.”!

A problem that immediately rises with this “a-model” is that, for small
o, the resulting graphs tend overwhelmingly to consist of small, isolated,
and densely internally connected components. This results from a start-
up problem—initially no edges exist in the graph, so p dominates R;; in
equation (5), and edges form randomly until, by chance, two edges share
a vertex in common. At this point, because o is small, the two vertices
that share a mutual “friend” will almost certainly become connected at
the expense of expanding their friendship networks into new territory.
The fraction of pairs of vertices that are members of the same connected
component grows only linearly with %, so connected graphs cannot be

Y The actual value of p is not important so long as it is small enough that no random
edges can be expected for o = 0 (i.e., p << 2/n[n — 1]). More specifically, the numerical
results with respect to o do change as p changes, but this dependency disappears
when the model is recast in terms of the model-independent parameter ¢, introduced
below. That is, ¢(0) varies with p, but L(¢) and C(¢) do not.

8 Note that o has no physical or social significance—it is simply a parameter that
enables the model to generate graphs ranging from highly ordered to highly random.
19 All work described was conducted on either a SUN\ Sparc 20 or a DEC\ alpha 500
running C under a UNIX operating system.

? The technical details of the algorithm are provided in the appendix.

21 Unless otherwise stated, the parameters used to generate the results presented here
are: » = 1,000, £ = 10.
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generated for small o without violating the sparse graph condition. Dis-
connected graphs pose a problem because they necessarily have L = oo,
and this makes them hard to compare with connected graphs or even each
other. One way to resolve this dilemma is to build in a connected substrate
before commencing the algorithm, thus ensuring that all subsequently
constructed graphs will be connected. A potentially serious objection to
such a step is that the properties of the resulting graphs may be so domi-
nated by the presence of the substrate that any conclusions drawn from
the model will fail to be sufficiently general to be of interest. The following
constraints on the choice of substrate minimize (although do not remove)
this concern:

1. It must exhibit minimal structure, in that no vertices are to be identified
as special. This eliminates structures like stars, trees, and chains, which
have centers, roots, and end-points, respectively.

2. It must be minimally connected. That is, it must contain no more edges
than necessary to connect the graph in a manner consistent with condi-
tion 1.

The only structure that satisfies both these criteria is a topological ring.
One advantage of this choice of substrate is that for sufficiently small o,
it results in graphs that resemble the connected caveman limit described
above; that is, densely intraconnected clusters strung loosely together in
aring (with its attendant linear length-scaling properties). It is less obvious
that the random limit also can be attained with this additional structure
built in. Nevertheless, numerical evidence suggests that this is precisely
the case. Hence, the ring substrate not only ensures connectivity, but also
allows the model to interpolate between roughly the desired limits. More
important, we will see that the results generated by the corresponding
model exhibit sufficiently generic features in the intermediate regime that
quite general conditions can be specified under which small-world net-
works should arise.

The clearest way to see this is to measure L and C for the a-model, for
fixed # and k, over arange of 0 < o < 20. The following functional similar-
ities between L(0)) and C(0:) are revealed (figs. 3 and 4):%

1. For large a, both statistics approach their expected random-graph
values.

2. At o. = 0, both L and C are high relative to their random-graph limits
and increase (as o, increases) to a distinct maximum at small o.

3. Both statistics exhibit a sharp transition from their maximum values to
their large-o limits.

2 Each of the points in fig. 5 is the average value of the relevant statistic over 100
random realizations of the construction algorithm for the corresponding value of o..
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So far, the model appears to conform to the earlier statement that highly
clustered graphs have large characteristic path lengths and, conversely,
that graphs with short characteristic path lengths are necessarily poorly
clustered.”® However, as figure 5 indicates, L(cr) and C(or) exhibit one im-
portant functional difference: the transition from large to small clustering
coefficients occurs at a larger value of o than the equivalent length transi-
tion. The upshot of this disparity is that there exists a class of graphs in
this region of o for which characteristic path length is small but clustering
is high.? Thus the small-world phenomenon can be cast in graph-theoretic
terms as the coexistence of high clustering and small characteristic path
length.

DEFINITION 1.—A small-world graph is a large-n, sparsely connected,
decentralized graph (n >> Kk, >> 1) that exhibits a charactevistic path

23 This conclusion is bolstered by the additional observation that, in the small-o re-
gime, L scales linearly with respect to z and logarithmically with respect to 7 for large
o, in correspondence with eqq. (2) and (3).

% These results remain qualitatively the same for a wide range of # and &, strongly
suggesting that they are true for all # and k, with the usual caveat n > k > 1. Oof
course, in practice, these inequalities are imprecise, the effective limits being: if & is
too small (in this case # — 2), the substrate will dominate the results; and if % is too
large (¢ — ), then all topologies will be equivalent.

508



Small-World Phenomenon

length close to that of an equivalent random graph (L = L q0m), et with
a clusteving coefficient much greater (C = C pdom)-

This definition does not depend on the specifics of the graph-construc-
tion algorithm—in fact, it can be applied to any graph regardless of its
construction. Nevertheless, the definition is only interesting if the phe-
nomenon it describes can also be shown to be independent of the specifics
of the model—in particular, the substrate. The reason for this is obvious:
networks in the real world are no more likely to be constructed on ring
substrates than they are to be completely ordered or completely random.
This potential shortfall in the theory can be addressed in two ways. First,
a variety of different substrates can be tested and their results compared
with those generated above. If small-world graphs are still attainable over
a significant interval of o values, then there is reason to think that they
constitute a robust class of graphs. Second, a theoretical understanding
of length contraction in partly ordered, partly random graphs may shed
some light on the existence of small-world graphs and help to specify
model-independent conditions that, if satisfied, will yield small-world
graphs.

The first approach is straightforward but tedious. The same model has
been tested with a number of other substrates—a two-dimensional lattice,
a Cayley tree, and a random substrate. All the substrates surveyed exhibit
qualitatively different properties from those of a ring, and also each other,
yet a-graphs based on all substrates invariably yield small-world graphs
over an extended interval of o.” The second approach—a theoretical ex-
planation of small-world graphs—is presented in the next section.

Shortcuts and contractions.—Drawing intuition from the results of the
o-model, it is now possible to develop an explanation of small-world
graphs in terms of a parameter that is independent of the particular model
used to construct them. To motivate this approach, note that, according
to equation (5) for & = 0, newly created edges are virtually guaranteed
to complete at least one triad.?® Two vertices connected by any such edge
must necessarily have been separated by a path of length two, prior to
the addition of the new edge. Hence, the addition of a new edge to an o-
graph at o = O contributes little in the way of length contractions, as it can
connect only pairs of vertices that are already “close.” In random graphs,
however, this condition no longer applies, and vertices that are widely
separated are as likely to become connected as those that are near neigh-
bors. These observations lead to the following definitions:

% A detailed description of these substrates and the corresponding model properties
is presented in Watts (1999, chap. 3).

% This is aside from the negligible propensity p to make a random connection.
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DEFINITION 2.—The vange r of an edge is the distance between the two
vertices that the edge in question connects when the edge itself has been
deleted. Equivalently, range can be thought of as the second-shortest path
length between two connected vertices (wheve the shortest path length is
necessarily one).

DEFINITION 3.—A shortcut is any edge with a range r > 2.

DEFINITION 4.—The parameter ¢ is the fraction of all edges in the graph
that are shortcuts.

Figure 5 can now be replotted against ¢ instead of o. The result, in
figure 6, demonstrates not only the previous result that it is possible for
highly clustered graphs to have small characteristic path lengths, but also
that this happens principally for small ¢.?

7 For very small ¢ (too small to resolve on the linear scale of fig. 6), there is an appar-
ent increase in both L and C as ¢ increases—analogous to the humps in fig. 5. The
basis of this effect is that, for small but nonzero o, an increase in o results in higher
local clustering, and so previously overlapping neighborhoods can become distinct,
yielding edges with » > 2 that do not connect previously distant parts of the graph.
This is indeed a practical problem with detecting shortcuts for this particular con-
struction algorithm, but it occurs only at very small p—Dbelow the value at which the
small-world phenomenon is relevant. Hence, it does not affect any of the results stated
here.
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The intuitive explanation for this additional observation is that, for
small ¢, the characteristic path length of the graph is large. Hence, the
introduction of a single shortcut is likely to connect vertices that were
previously widely separated. This shortcut then contracts the distance not
only between that pair of vertices, but also between their immediate
neighborhoods, their neighborhoods’ neighborhoods, and so on. Thus, one
single shortcut can potentially have a highly nonlinear impact on L. By
contrast, the clustering coefficient C is only reduced in a single neighbor-
hood—as the result of one less triad being formed—and so the decrease
in C can be at most linear in ¢. This nonlinear (global) versus linear (local)
impact of shortcuts enables large C to coexist with small L at small values
of ¢. But once ¢ becomes large, L has already decreased to a small value,
and so subsequent shortcuts can do little to reduce it further. Thus L(¢)
must approach its random graph limit asymptotically, as shown in fig-
ure 6.

The parameter ¢ turns out to have explanatory power even beyond
the specific construction presented above. Other models of graphs that
interpolate between ordered and random limits also exhibit length and
clustering properties that can be understood in terms of shortcuts, the key
requirement being that shortcuts be permitted to connect vertices that are
separated by distances on the order of the size of the entire graph. Thus,
it can be conjectured that any graph with the property n > k&, > 1,
which exhibits (@) a clustering coefficient C > k/» and (b) a small fraction
of long-range shortcuts, will be a small-world graph.

If this conjecture is true, then small-world graphs can be realized by
a great many construction algorithms, of which the o-model is but one.
However, it also suggests that there are many kinds of partly ordered,
partly random graphs in which the small-world phenomenon will not oc-
cur. The key criterion that the small fraction of introduced shortcuts be
“long range” is really equivalent to the statement that new connections
be determined without regard to any kind of external length scale imposed
upon the graph (such as by explicitly disallowing connections to be made
between vertices that are separated by greater than a certain physical
distance). It is the independence of any external length scale that enables
a tiny fraction of shortcuts to collapse the characteristic path length of the
system to near its asymptotic, random-graph value, without significantly
reducing the corresponding clustering coefficient. This constraint implies
that the small-world phenomenon is unlikely to be exhibited by networks
whose connectivity is determined solely by physical forces, which imply
corresponding length scales.

Although the above conjecture appears to be a sufficient condition for
the existence of small-world networks, it turns out that it is not necessary.
In other words, it is possible to contract distances in large graphs with a
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”

F1G. 7.—Schematic of a contraction: vertex v contracts the path length between
groups # and w, but no edges are shortcuts.

negligible effect on the clustering, without using any shortcuts at all. The
simplest example of such a situation is detailed in figure 7, from which it
is obvious that groups of vertices are being brought closer together by
virtue of a single common member but that none of the edges involved is
a shortcut. Fortunately, a simple modification of the definition of a short-
cut is adequate to capture this new scenario:

DEFINITION 5.—A contraction occurs when the second-shortest path
length between two vertices, sharing a common neighbov, is greater than
two. In other words, a contraction is a pair of vertices that share one and
only one common neighbor.

DEFINITION 6.—By extension, \y can be defined as the fraction of pairs
of vertices with common neighbors that are contractions.

The results displayed in figure 7 can be expressed in terms of y (see
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F1G. 8.—Comparison of L(y) and C(y), scaled by their corresponding values
at Y, = y(o = 0) = .08.

fig. 8), which again shows the coexistence of small L and large C over a
large range of y.? It follows from these definitions that a shortcut is simply
a special case of a contraction in which one (or both) of the “groups” con-
sists of a single vertex. Long-range contractions are thus a more general
mechanism than shortcuts for generating small-world networks. In princi-
ple though, both shortcuts and contractions achieve essentially the same
end—to connect what would otherwise be distant parts of a large, sparse
graph with a large characteristic path length. Hence, because shortcuts
are conceptually simpler and require less computational effort, all results
in this article are stated in terms of ¢, bearing in mind that they can be
recast in terms of y if necessary.

Evidence of the Small-World Phenomenon in Real Networks

Milgram’s experiment suggested that the idea of the small-world phenom-
enon is at least plausible for a real social network the size of the U.S.
population. But the precise mapping out of social networks of this magni-
tude is a practical impossibility, due to the ambiguities inherent in defining

% Note that, unlike ¢, W is never zero, even for the most clustered graphs.
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both a member of the network and also what constitutes a friendship.
Furthermore, tracing experiments like Milgram’s face a number of techni-
cal obstacles, which he outlines (Milgram 1967); the main problem being
that one can never be sure that the chain of intermediaries actually traced
between two people is the shortest one possible.”” We can now understand,
in terms of shortcuts, at least one reason why this may be so. As noted
in the previous section, small-world graphs occur for values of ¢ at which
most vertices have no shortcuts at all. For example, for » = 1,000 and
k = 10, ¢ = .01 is sufficient for L to be indistinguishable from that of a
random graph. If only one in a hundred edges is a shortcut, however, then
(for £ = 10) about 90% of all vertices will have no shortcuts in their local
neighborhood. This absence of global information at the local scale poses
significant problems for effective tracing of shortest path lengths in a net-
work, as such an exercise requires knowledge not just of one’s friends,
but of one’s friends’ friends, and so on. If shortcuts exist, but only outside
of one’s local network vicinity, it becomes extremely difficult to utilize
them consciously and thus construct an optimal path.

For these reasons, along with the practical difficulty associated with
the empirical estimation of even local parameters like £ and C (Kochen
1989), direct resolution of the small-world phenomenon in the actual social
world seems unlikely. However, there is nothing about the small-world
graph definition above that demands the graph in question represent a
social network. In fact, one of the useful aspects of the corresponding
conjecture is that it is quite general, specifying neither the nature of the
vertices and edges, nor a particular construction algorithm required to
build the graph. If it is true, then many real networks, satisfying the re-
quired »# and & conditions, should turn out to be small-world networks.
Examples of large, sparse graphs are easy to think of (neural networks,
large organizations, citation databases, etc.) but difficult to obtain in the
required format where both vertex and edge sets are precisely defined
and completely documented. Nevertheless, three scientifically interesting
examples are presented below.

The first example is the collaboration graph of feature-film actors. In
the actor collaboration graph (Tjaden 1997), a vertex is defined as a cast
member of any feature film registered on the Internet movie database,®

 On the other hand, as White (1970) points out, longer chains tend not to complete,
biasing the sample toward shorter chains and leading to a corresponding underesti-
mate of length.

%0 The Internet Movie Database (http://www.us.imdb.com) lists the cast members of
all films, of all nationalities, since 1898. The graph studied in this article is actually

the largest connected compenent of the entire graph, consisting of about 90% of all
actors listed in the IMDB as of April 1997.
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TABLE 1

CHARACTERISTIC PATH LENGTH (L) AND CLUSTERING
COEFFICIENT (C) FOR THREE REAL NETWORKS

LArlual LRandnm CArlunl CRandom
Movie actors ...... 3.65 2.99 .79 .00027
Power grid ......... 18.7 12.4 .080 .005
C. elegans ........... 2.65 2.25 .28 .05

and an edge represents two actors appearing in the same movie. This
structure is interesting, as it is a simple case of a large (» = 226,000),
sparse (¢ = 61) social network. It is also reminiscent of the collaboration
graph of mathematicians that is traditionally centered on Paul Erdos
(Grossman and Ion 1995).3! The second example—the western states
power graph (n = 4,941, k = 2.94)—represents the power-transmission
grid of the western United States and is relevant to the efficiency and
robustness of power networks (Phadke and Thorp 1988). Vertices repre-
sent generators, transformers, and substations, and edges represent high-
voltage transmission lines between them. The final example is that of the
neural network of the nematode C. elegans (White, Thompson, and Bren-
ner 1986; Achacoso and Yamamoto 1992)—the sole example of a com-
pletely mapped neural network. For the C. elegans graph (n = 282; k =
14), an edge joins two neurons if they are connected by either a synapse
or a gap junction. All edges are treated as undirected, and all vertices as
identical, recognizing that these are crude approximations from a biologi-
cal perspective.

Table 1 shows a comparison between L and C for each of these graphs
and also L and C for random graphs with the same # and k. Note that,
in each case, the characteristic path length is close to that of the equivalent
random graph, yet the clustering coefficient is consistently much greater.
A graphical way to view the same relationship is presented in figure 9.
Here, L is plotted versus C for the three real graphs, and also for equiva-
lent (that is, with same # and &) connected caveman graphs, where in each
case, the statistics have been normalized by their corresponding random-
graph values. From this picture, it is clear that not only are the real
networks statistically distinct from both their random and caveman
equivalents, but they are all distinct in the same way. Furthermore, their

I This collaboration graph would also be an interesting case to examine. Unfortu-
nately, the only data available is that in the immediate neighborhood of Paul Erdoés,
and this is not sufficient to draw any conclusions about its global structure.
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F1G. 9.—L and C statistics for the three real networks (the actor collaboration
graph, the western states power graph, and the C. elegans graph) and their con-
nected caveman equivalents (same # and k), scaled by their values for equivalent
random graphs.

combination of small L and large C cannot be explained as a linear inter-
polation between the two extremes—in other words, clustering and length
do not vary in a commensurate fashion. As figure 10 shows, however, this
combination of properties can be replicated by the o-model. It is clear
that, as o increases, the o-statistics remain at first clustered along the
(high-L, high-C) diagonal and then sharply depart from the diagonal to
become small-world graphs, decreasing rapidly in characteristic path
length while remaining almost constant in terms of the clustering coeffi-
cient. As o increases to reach the clustering transition, C decreases rapidly
for L fixed near its asymptotic limit, until the random limit is reached at
large o. These results indicate that the small-world phenomenon is not
just a property of an abstract class of hypothetical graphs, but arises in
real networks. Furthermore, it is not specific to a particular kind of net-
work or restricted to a certain size range. The three graphs examined span
a range of three orders of magnitude in # and represent completely differ-
ent actual networks, yet all are small-world graphs in the sense defined
above. Finally, not only are all three graphs small-world graphs in the
broad sense of high clustering coexisting with small characteristic path
length, but the relationship between L and C in the real graphs is consis-
tent with the corresponding statistics of the o-graph model.
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F1G. 10.—L and C statistics for the o-model (# = 1,000, & = 10), scaled by their
values at the random-graph limit (in practice, this is taken as o = 20).

DYNAMICAL SYSTEMS ON SMALL-WORLD GRAPHS

Having established that a set of relatively tiny perturbations to the local
structure of a highly clustered graph can have a dramatic impact upon
its global structural properties, it is natural to ask whether or not the same
changes can also affect the behavior of dynamical systems that are coupled
according to such a graph. This is a topic that is directly relevant to the
social sciences: the role of social structure in generating globally observ-
able, dynamical features. So far, structure has been treated as an autono-
mous feature of networks and defined narrowly in terms of sparse, undi-
rected graphs. This has paid off by yielding some robust statements about
the small-world properties of a general class of graphs that are partly
ordered and partly random, and that seem to reflect some of the features of
real networks. However, a greater issue is to understand the relationship
between structure and dynamics.

As such, the following discussion builds not only on issues of network
structure, but also upon a whole literature of distributed dynamical sys-
tems, in which systems are often assumed to be completely connected (the
most tractable case). Where sparsely coupled systems are considered, the
relevant coupling topology is usually assumed to be either completely or-
dered (e.g., a low-dimensional cubic lattice) or completely random. As em-
phasized earlier, real networks are likely to be sparse and may combine
significant elements both of order and randomness, with resultant proper-
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ties, like the small-world phenomenon, that cannot be captured by either
of these approximations. Whether or not this structural oversight turns
out also to be an oversight from the perspective of dynamical systems is
not obvious. This article offers a more specific way to cast the issue at
hand: do significant new phenomena emerge when the connectivity of
distributed dynamical systems are modeled on the graphs presented ear-
lier?

Disease Spreading in Structured Populations

A simple case of a dynamical system is that of a disease spreading from
a small seed of initiators into a much larger population whose structure
is prescribed by some underlying graph.* The bulk of previous work on
the spread of diseases focuses on populations in which uniform mixing is
assumed between elements (see, e.g., Murray 1991). This is an important
assumption because it enables population structure to be ignored, thus
greatly simplifying the analysis. Some work, however, has grappled with
the issue of population structure. Kareiva (1990) reviews a number of such
attempts (which he calls “stepping-stone” models), and May and col-
leagues (Hassell, Comins, and May 1994; May 1995) have considered vari-
ous parasite-host problems on two-dimensional grids of discrete but
homogeneous patches. Both Kareiva and May conclude that the introduc-
tion of spatial structure can significantly affect both the population size
and its susceptibility to parasites and disease. A similar approach has been
used by Hess (1996a, 1996b) to compare virus transmission among sub-
populations that are connected according to various simple topologies
such as a ring and a star. Also, Sattenspiel and Simon (1988) have consid-
ered a detailed model of the spread of an infectious disease in a structured
population in which different connective arrangements between the sub-
populations are compared. Finally, Longini (1988) has utilized real airline
network data in order to model the 1968 global outbreak of influenza.
None of this work, however, goes on to treat the global dynamical proper-
ties of the system explicitly as a function of the structure. The models of
Sattenspiel, Simon, and also Hess do consider different types of connectiv-
ity between subpopulations, but they consider isolated topologies, as op-
posed to a continuum, and their choices reflect those cases which, in the
context of this article, are extremal (such as a ring versus a random graph).
Extremal cases are certainly natural to consider, but if it is true that real

52 Here I discuss disease spreading because of its obvious public health relevance, but
qualitatively similar dynamics could describe the spread of other kinds of contagion
such as ideas, rumors, fashion, or even crime (Gladwell 1996).
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networks exhibit important properties of both ordered and random net-
works, then it is important to consider the intermediate regime as well.

Dynamics as a function of structure.—In this sense, the work most
closely related to the approach taken here is that by Kretzschmar and
Morris (1996), who analyze the spread of a disease—both in terms of ex-
tent and time scale—as a function of the overall concurrency of relation-
ships in the population. Roughly speaking, they examine a family of
graphs that interpolates between a world of exclusively monogamous (but
randomly formed) relationships and an unconstrained random graph, in
which concurrent relationships are likely to form. They determine that
increased concurrency of relationships significantly increases the extent
of the disease and its rate of spread, even when the total number of rela-
tionships in the population is held constant. Essentially, this result stems
from the increasing connectedness of extremely sparse (¢ = 1) graphs:
serial monogamy yields almost completely disconnected graphs (in the
sense that no connected components larger than dyads can exist), but ran-
dom graphs with the same number of edges exhibit relatively large con-
nected components. Hence, as Kretzschmar and Morris conclude, it is the
size of the largest connected component that drives the spread of disease
across the population. The approach here also examines the effects on
disease spread of changing the distribution of a fixed number of edges
over a fixed number of vertices. It is different, however, in that Morris
and Kretschmar consider changing concurrency in an otherwise randomly
mixing population with £ = 1, while here the amount of randomness is
varied in a connected population with £ >> 1. Hence, any observed differ-
ences in the dynamical properties of the system must be driven by more
subtle features of the topology than connectedness. In fact, as we shall
see, there is much about the system that cannot be reduced to any single
structural characteristic of the underlying graphs—a warning signal for
dealing with any more complicated dynamics.

In order to emphasize the role of population structure, the subsequent
analysis is restricted to a simplified model of disease spreading in which
each element of the population is in one of three states: susceptible, in-
fected, or removed. At each discrete point in time (t), every infected ele-
ment can infect each one of its neighbors with probability (p), the infec-
tiousness. Any newly infected elements remain infected for one time step,*

% The time period (t) for which an infected agent remains infectious can be set to one
without loss of generality. The reason is that p and © do not vary independently. In
fact, the dynamics for any given 7 can be reproduced with T = 1 merely by rescaling
». In other words, there is complete equivalence (in this model) between being exposed
to a more infectious disease for a short period of time and a less infectious disease
for a long period of time. This feature of the model greatly simplifies its analysis.
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after which they are removed permanently from the population (presum-
ably by immunity or death) and so play no further part in proceedings.
Hence, if at ¢ = 0 a single element is infected (by some external influence),
then at some later time, one of two things must have happened:

1. The disease will have run its course and died out, infecting some fraction
of the population and leaving the remaining fraction F, uninfected,

or

2. The whole population will have been infected (F; = 0) in some character-
istic time 7.

The natural question to ask then is whether or not the structure of the
population, expressed in terms of the a-graph model presented earlier,
has any effect on F, and T of the related system. Furthermore, if so, can the
functional forms of F(¢) and 7(¢) be understood in terms of our structural
statistics L(¢p) and C(¢)?

Results.—The model has two parameters that can vary independently
of each other: the infectiousness p, which determines the local dynamics;
and the fraction of shortcuts ¢. We are now in a position to compare some
results for an entire range of topologies as a means of answering the two
questions stated above within the very narrow context of this specific dy-
namical system. Figure 11 shows the steady-state fraction of susceptibles
F, versus p for the two extreme values of ¢, where graphs of parameters
n = 1,000, £ = 10 have been used to determine the couplings of the system.
Three distinct regions are apparent:

1. For p =< 1/(k — 1) = .11 all topologies (i.e., all values of ¢) yield the
same result: the disease infects only a negligible fraction of the population
before dying out. This is a ¢rivial steady state, because nothing happens
that can distinguish between different topologies.

2. For .11 = p < .5 different topologies yield different F,.

3. For p = .5, all topologies once again yield the same end result, only this
time it is a nontrivial steady state because the disease has taken over the
entire population.

There is nothing more to say about region 1, but regions 2 and 3 deserve
some extra attention. Region 2 is confusing: there appears to be some sig-
nificant relationship between structure and dynamics, but its mechanism
is not transparent. Figure 11 suggests that in region 2 the fraction of the
population that will become infected with a disease of some specified p
depends significantly on ¢, and this is shown more explicitly in figure 12
for a particular value of . In epidemiological terms, this dependence on
0 is equivalent to the statement that the impact of a disease depends not
just on how infectious it is, but also on the connective topology of the
population. This message is not new in the epidemiological literature, es-
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() in the underlying o-graph for the disease spreading model.

pecially that of sexually transmitted diseases. What is new is the idea that
the structural changes required can be very subtle. Unlike the difference
between a chain and a star graph or a ring lattice and a random graph, the
difference between a big- and a small-world graph can be a matter of only
a few randomly rewired edges—a change that is effectively undetectable at
the level of individual vertices. Unfortunately, it is difficult to be any more
precise than this, as the functional form of F,(9) is not clear. Nevertheless,
even this broad-brush observation has implications for the way we think
about social diseases, which are often perceived as confined to isolated sub-
groups of a population. The message here is that the highly clustered nature
of small-world graphs can lead to the intuition that a given disease is “far
away” when, on the contrary, it is effectively very close.

Region 3 is a simpler matter to examine, as the disease always takes over
the entire population regardless of its connective topology. It is merely a
question of how long this takes. However, figure 13 shows that in this
region the time taken to reach the steady-state F, = 0 varies dramatically
as a function of ¢ and that disease can spread on a small-world graph far
more rapidly than in a connected caveman graph and almost as fast as
in a random graph. In fact, figure 13 also shows that when p = 1, T(¢)
bears a close functional relationship to L(¢).** Hence, in this parameter

% For p = 1, this functional similarity might be expected, as T is just the maximum
distance from the initially infected vertex to any other vertex in the graph. For a
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regime at least, the transient time for the dynamics to reach the same,
nontrivial steady state bears a simple and obvious relationship to the
structure of the underlying graph. That is, shorter characteristic path
length implies faster spreading of the disease. In a real-world scenario,
where an epidemic can be responded to, the time scale on which it spreads
becomes a crucial factor. A striking consequence of this result is that, in
a small-world graph, the characteristic time scale has become very small,
but the clustering C is still large. As with the extent of disease spread in
region 2, the change in structure in region 3 that causes the disease to
spread much faster may not be observable at a local level.

Although the relationship between population structure and disease dy-
namics is not always clear, even for this simple model, it does appear as
if the gross features of the dynamics are dominated by the characteristic
path length of the underlying graph. This is by no means universally true
of dynamical systems on graphs. For instance, when the transmission of
a behavioral trait exacts a cost, such as for a prisoner’s dilemma model
of cooperation, a high degree of reciprocity may be necessary for the trait
to survive in the population (Axelrod 1984; Boyd and Richerson 1988;
Cohen, Riolo, and Axelrod 1999). In the case of small groups of coopera-
tors struggling for survival in a sea of defectors, Axelrod (1984) notes that
cooperators must interact preferentially, which in network terms is equiv-
alent to high local clustering. In a highly clustered graph, cooperators lo-
cated in the same cluster can survive—even thrive—in the midst of a
noncooperative majority. Conversely, in a random graph (with negligible
clustering), any small group of initial cooperators will be eroded from the
periphery, as each peripheral cooperator will be interacting predomi-
nantly with defectors, thus failing to reap the benefits of reciprocity. As
with disease spreading, there is a transition between these two extremes,
but in this case, the dynamics tend to be dominated by the clustering
coefficient rather than by the characteristic path length.

This result suggests an interesting role for small-world architectures,
which by virtue of their short characteristic path length and high cluster-

perfect ring structure 77 = D, where D is the diameter of the graph and D = 2L.
Hence, for even the approximate ring structure generated for an o-graph with ¢ =
0, we could expect that 7" = 2L. Furthermore, for any graph, it is necessarily true
that L = T =< D. For random graphs, where the number of vertices at a distance d
from any vertex generally grows exponentially (Bollobas 1985), D < 2L so we could
also expect that L = T =< 2L for any value of ¢. Thus 7 should be related to L through
nothing more than a multiplicative factor 1 =< ¢(¢) = 2, which is not significant on
the scale of the changes occuring in both statistics as a function of ¢. Hence, the two
curves in figure 13 might be expected to look very much alike, as they do.

% There are a number of subtleties to this result which are explained more completely
in Watts (1999, chap. 8).
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ing coefficient, can support the rapid dissemination of information with-
out necessarily compromising behavior that is individually costly but
beneficial when reciprocated. Furthermore, the more general idea of opti-
mizing an architecture to satisfy two or more opposing constraints may
prove a useful concept in the design or modification of large networks
such as organizations.

SUMMARY

This article examines a particular class of graphs that interpolates be-
tween highly ordered and highly random limits. A significant feature of
these graphs is that the presence of a very small fraction of long-range
shortcuts can lead to the coexistence of high local clustering and a small
global length scale. The superposition of these apparently contradictory
properties is a graph-theoretic formalization of the small-world phen-
omenon. The motivation for the small-world phenomenon comes from
social networks, but it turns out to be a much more general effect that
arises under quite weak conditions in large, sparse, partly ordered and
partly random networks. Its existence is not predicted by current network
theories, yet it seems likely to arise in a wide variety of real networks,
especially in social, biological, and technological systems. One conse-
quence of this result is that it is highly likely that the phenomenon exists
in the real social world—a notion currently supported by only limited
data but consistent with anecdotal experience.

In addition to their interesting structural properties, small-world graphs
are also relevant to the social and natural sciences through their effect on
the globally emergent features of dynamical systems. Specifically, distrib-
uted dynamical systems can exhibit dramatically different behavior on
small-world networks—an effect that may have implications in fields as
diverse as public health and organizational behavior and design.

APPENDIX

The algorithm for constructing a graph according to equation (5) proceeds
as follows:

1. Fix a vertex i.

2. For every other vertex j, compute R, ; according to equation (5), with the
additional constraint that R;; = 0 if i and j are already connected.

3. Sum the R;; over all j, and normalize each to obtain variables P;; = R, ;/
(X1 R;)). Then, since X; P;; = 1, we can interpret P;; as the probability
that 7 will connect to j. Furthermore, we can interpret P;; geometrically
as follows: divide the unit interval (0, 1) into #» — 1 half-open subintervals
with length P;; V j # i.
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4. A uniform random variable is then generated on (0, 1). It must fall into
one of the subintervals, say the one corresponding to ; %
5. Connect i to j .

This procedure is then repeated until the predetermined number of
edges (M = kn/2) has been constructed. The vertices i are chosen in ran-
dom order, but once a vertex has been allowed to “choose” a new neighbor,
it may not choose again until all other vertices have taken their turn.
However, vertices may be “chosen” arbitrarily often, and this leads to a
nonzero variance in the degree k. But the fact that all vertices are forced
to make one new connection before any others are allowed to choose a
second time ensures at least that no vertices will be isolated (as long as
k=2).
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