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Abstract 

Complete and accurate race and ethnicity (RE) patient information is important for many areas of biomedical 

informatics research, such as defining and characterizing cohorts, performing quality assessments, and identifying 

health inequities. Patient-level RE data is often inaccurate or missing in structured sources, but can be 

supplemented through clinical notes and natural language processing (NLP). While NLP has made many 

improvements in recent years with large language models, bias remains an often-unaddressed concern, with 

research showing that harmful and negative language is more often used for certain racial/ethnic groups than 

others. We present an approach to audit the learned associations of models trained to identify RE information in 

clinical text by measuring the concordance between model-derived salient features and manually identified RE-

related spans of text. We show that while models perform well on the surface, there exist concerning learned 

associations and potential for future harms from RE-identification models if left unaddressed. 

Introduction 

Complete and accurate race and ethnicity (RE) patient information is important for many areas of biomedical 

informatics research and clinical practice, such as defining and characterizing cohorts, performing quality assessments, 

and identifying health inequities. The electronic health record (EHR) provides a rich source of patient health data; but 

while RE can exist as structured data in the EHR, this information is often missing or inaccurate1. The clinical narrative 

provides an alternative, potentially more accurate source of RE information, and natural language processing (NLP) 

techniques have been proposed to extract RE from clinical text1. 

Methods such as imputation, multi-source data linkage, and NLP have been used to supplement missing or inaccurate 

RE data. For example, the Bayesian Improved Surname Geocoding2 approach uses a patient’s geocoded address and 

last name to compute the probability of a patient belonging to a given racial or ethnic group3–5. Other imputation 

approaches rely on surnames to identify Latino6,7 and Asian/Pacific Islander8 patients. Previous work has shown 

imputation approaches relying on surname/geocoding perform poorly for people from Native American and/or multi-

racial backgrounds9. Data linkage approaches using multiple sources, such as claims data and cancer registries, have 

also been used to supplement missing/inaccurate RE data in the EHR7,10,11. Alternatively, clinical notes can be used to 

extract clinician-assessed RE information with NLP1. Sholle et al. leveraged a rule-based approach to extract RE 

information from clinical text, performing well for Black and Latino patients1. NLP provides a wide range of 

approaches to identify patient-associated features from clinical notes, such as social determinants of health12–14.  

While a rich source to recover RE data, the clinical narrative can contain negative or stigmatizing language (e.g., 

“aggressive” or “refuse”) biased against marginalized racial groups15–17. Furthermore, NLP models have been shown 

to learn harmful language associations from clinical text18,19. These issues are compounded by the difficulty of auditing 

opaque deep learning models. While many methods exist to audit clinical NLP approaches20, auditing learned 

associations is an equally important approach to interrogate bias, promote interpretability, and build trust. Without a 

deep understanding of the biases present in clinical text, it will be difficult to detect when clinical NLP models may 

inherit or exacerbate such biases. While previous work has interrogated learned association biases in clinical NLP 

models for RE identification19, these approaches have not yet leveraged model-derived salient features to understand 

the potential for bias. In this work we examined the associations between inputs and outputs to interrogate potentially 

biased associations learned by models trained to identify RE in clinical text. We performed this bias audit by measuring 

the concordance between model-derived salient features and manually annotated spans of text that are potentially 

informative for RE identification (indicators). Understanding this concordance can improve RE identification research 

and provide insights into human biases that models could propagate. 
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Methods 

We describe our approach to audit deep learning models for biases in their learned associations for the task of sentence-

level RE labeling. We examine the concordance between spans of text known to contain explicit RE information and 

model-derived salient features. Our approach relies on sentences with two sets of gold-standard annotations for RE 

labels and information related to RE. We describe the dataset, classification task and model training, salient feature 

extraction, and bias audit approach. 

Data 

We sampled sentences from the Contextualized Race and Ethnicity Annotations for Clinical Text (C-REACT) 

dataset21, built from MIMIC-III22. The sample consists of 5,834 sentences from clinical notes annotated for RE labels 

at the sentence level and RE indicators at the span level. RE labels consisted of the US census categories, as well as 

“No Information Indicated” to signal a sentence does not convey any RE information, and “Not Covered” to signal 

the presence of RE that falls outside of the census categories. Of importance to this work is the “No Information 

Indicated” label, which serves as the only negative label when a sentence lacks any information on a patient’s race or 

ethnicity. Indicators included direct mentions of race or ethnicity (e.g., “Native American”, “Black”, “Latino”, “non-

Latino”) as well as explicit discussions of country/nation of origin or geographic (country) and primary, preferred, or 

spoken language (language). 

Sentences with the label white were the most common (n=3,318), followed by sentences with labels for Black and/or 

African American (Black/AA) (n=542), Latino (n=502), and Asian (n=398). Training and test sets were created for 

each label (Black/AA, white, Asian, and Latino) using a 75/25 split with approximately 50% positive and 50% 

negative labels (Table 1). For each RE category, all positively labeled sentences were randomly sampled and 

distributed among the training or test sets. Negative labels were defined as “No Information Indicated” labels or labels 

for other RE categories (e.g., Black/AA labels could be negative labels for the sentences labeled with Asian).  

Table 1: Descriptive statistics for the training and test sets. 

 Black/AA Asian Latino White 

Train      

 Sentences 815 599 753 4,977 

Positive labels 406 299 375 2,474 

Negative labels 409 300 378 2,503 

Patients 598 413 509 3,010 

Notes 689 467 598 3,678 

Test      

 Sentences 273 199 253 1,678 

Positive labels 136 99 127 844 

Negative labels 137 100 126 834 

Patients 174 122 147 831 

Notes 214 153 194 1,155 

 

Model Training and Evaluation 

We trained one model for each of the four RE labels using binary classification. These RE “information models” were 

trained to identify sentences with information on a patient’s race or ethnicity. The base of the models used a frozen 

BERT-small model that had been further pre-trained on PubMed23 and then general clinical text data24 to create 

contextual word embeddings. These embeddings were fed into a convolutional neural network followed by a single 

fully connected layer to classify each sentence. Given that the model pre-training step did not clean data by removing 

punctuation/numbers and performing lemmatization, no text cleaning beyond sentence splitting was performed. 

Models were trained for 200 epochs with a learning rate of 1e-05 and a batch size of 128. The best performing model 

was defined as the model with the best F1-score that improved over the previous best F1-score by at least 0.5% on the 

training set. We deployed a frozen BERT-base model given the relatively small training data. These models are 

collectively referred to as the BERT-based models. 
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We also developed baseline models following a previous approach by Sholle et al., where each label has its own set 

of regular expressions and a single mention constituted a positive prediction1. Regular expressions were used without 

any modification besides those needed to translate code to Python. These models are collectively referred to as the 

baseline models. 

Salient Feature Extraction 

We extracted salient features using integrated gradients25 for all BERT-based models. This approach leverages 

gradients and input values to identify important features, while overcoming issues with insensitivity to small 

perturbation, common in well-trained models25. Following Sundararajan et al., we used embeddings of all zeros as a 

baseline for each input. The integrated gradients approach multiplies gradient scores by the input value to output 

saliency scores for each dimension in each token embedding. Following Ding and Koehn’s approach26, we calculate 

a token-level saliency score by summing over each dimension’s saliency score.  

Bias Audit 

Learned association biases between input tokens and output classes were audited using two approaches. The first 

follows previous work26 to rank all features in a sentence using saliency scores and to measure the median ranking of 

the most salient indicator and the percentage of sentences with at least one indicator in the top one, two, and three 

most salient features for all sentences (“ranking metrics”). Ranking metrics convey information on how often 

indicators are highly salient features for information models. The second approach ranks tokens by how frequently 

they are identified as one of the three most salient tokens in each sentence, over all sentences (“highly salient tokens”). 

Studying highly salient tokens uncovers exactly what kinds of tokens are salient, even if they’re not indicators. Positive 

saliency scores indicate that a feature influenced the model towards a positive prediction, and so positive scores were 

used for all rankings concerning positive predictions. Similarly, for negative predictions, negative scores indicate that 

a feature influenced the model towards a negative prediction, and were thus used for rankings concerning negative 

predictions. In both cases, we refer to highly ranked features as the most salient features. 

Finally, while RE indicators could provide a strong signal for identifying RE in clinical text, there could exist other 

weaker signals. To identify these weaker signals, we mask all indicators with the special BERT token “[MASK]” in 

the training and test sets previously described (“masked data”) and assess classification performance and highly salient 

features. For example, the sentence “patient is an elderly Native American male” would become “patient is an elderly 

[MASK] male”. The “[MASK]” token was used because during BERT’s pre-training it indicated a missing token to 

be inferred by BERT from the surrounding context. While ours is a classification task, the underlying need to infer 

missing information given the context is still there. In this scenario, classification performance can flag the presence 

of signals outside of RE indicators and highly salient features could provide more specific details. Models were re-

trained and re-evaluated on the masked data following the previously described approach. 

Results 

We first present results on model classification performance using F1, recall, and precision. Next, we present the bias 

audit results with ranking metrics and highly salient features. Finally, we interrogate what features are highly salient 

in an extreme scenario where RE indicator spans are removed from sentences. 

Model Performance 

All BERT-based models achieved a test set F1-score above 0.80, with the white information model performing the 

best (F1=0.90), followed by the Latino (F1=0.88), Black/AA (F1=0.84) and Asian (F1=0.83) information models 

(Table 2).  Each baseline model outperformed its respective BERT-based counterpart, except for the white information 

model. The regular expressions for the white information model baseline extracted ambiguous terms like “white”, 

which were often used in discussions not pertaining to race (e.g., “patient’s white blood cell count is elevated”). We 

experimented with other architectures using a long short-term memory network or only a fully connected neural 

network on top of the frozen BERT-small, but found that they performed significantly worse than the current model. 

Table 2: Test set performance metrics 

 BERT-based Models Baseline models 

Performance 

Metric 

Black/AA Asian White Latino Black/AA Asian White Latino 

F1 0.84 0.83 0.90 0.88 0.97 0.99 0.87 0.96 

Precision 0.85 0.84 0.87 0.86 0.98 1.0 0.78 0.93 

Recall 0.82 0.82 0.94 0.89 0.97 0.99 1.0 1.0 
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Bias Audit: Ranking Metrics 

For positive predictions, the median rank of the most salient indicator token was between 1 and 3 for each information 

model, with the Black/AA and Latino Information models ranking an indicator as the most salient feature a majority 

of the time (Table 3). The Latino information model had the highest percentage of top highly ranked indicators, ranging 

from 80.6% to 97.7% for the top one and top three metrics, followed by the Black/AA and white information models. 

The Asian information model ranked indicators much lower than the other models, ranging from 26.9% to 54.8% for 

the top one and top three metrics. Overall, all models contained at least one indicator in the top three most salient 

features a majority of the time: Latino (97.7%), Black/AA (89.3%), white (81.4%), and Asian (54.8%). 

Ranking metrics for true positive cases were the same or better than the overall positive case. For false positive cases, 

all ranking metrics dropped significantly, especially for the Asian Information model. While all models had indicator 

tokens in the top three most salient features a majority of the time, the Asian information model was significantly 

lower with indicators in the top three most salient features only 7.7% of the time. Furthermore, the median rank of the 

most salient indicator is 28, compared to three or two for all other models. 

Table 3: Indicator saliency score ranking metrics for positive, true positive, and false positive cases. 

Median is the median rank of the most salient indicator. Top n is the percentage of times an indicator is in the 

n most salient features.  

 All Positive True Positive False Positive 

Model Median Top 

1  

(%) 

Top 

2  

(%) 

Top 

3  

(%) 

Median Top 

1  

(%) 

Top 

2  

(%) 

Top 

3  

(%) 

Median Top 

1  

(%) 

Top 

2  

(%) 

Top 

3  

(%) 

Black/AA 1 56.5 84.0 89.3 1 58.0 87.5 93.8 2 47.4 63.2 63.2 

Asian 3 26.9 38.7 54.8 3 31.2 43.8 62.5 28 0.0 7.7 7.7 

White 2 42.1 68.9 81.4 2 43.4 71.7 84.0 3 28.6 40.3 54.5 

Latino 1 80.6 96.9 97.7 1 88.3 100.0 100.0 2 33.3 77.8 83.3 

 

Bias Audit: Highly Salient Tokens 

While ranking metrics can tell us whether models are relying on indicators for predictions, interrogating exactly what 

kinds of features are highly salient can provide a more complete picture. Tables 4 and 5 contain the counts of salient 

features (features that are in the top three most salient for each sentence) across true positive, false positive (Table 4), 

true negative, and false negative (Table 5) cases. In true positive prediction cases, information models highly ranked 

tokens that coincided with indicator spans (Table 4). For example, positive predictions for the Black/AA information 

model ranks indicators related to race like “african” and “american” highly, while the white information model ranks 

“white” and “caucasian" highly. The Latino information model ranked language indicators or tokens related to 

language like “spanish” and “speaking”. Highly ranked tokens for the Asian information model included country and 

language indicators like “vietnamese” and “chinese", while also ranking special BERT tokens used during BERT’s 

pre-training phase such as “[CLS]” and “[SEP]” as highly salient features more often than other models. False positive 

cases often included features that are not directly related to a model’s specific race/ethnicity information task. For 

example, the most highly ranked salient feature for the Black/AA information model is “caucasian”, while the second 

most highly ranked salient feature for the Hispanic information model is “russian" (Table 4). 

While there is not enough room to present highly salient features in overall positive cases, we discuss them here. For 

the Black/AA information model on positive cases, five out of 10 features are indicators, but one of these, “caucasian”, 

is not considered predictive for the Black/AA category. While “american” was never marked as an indicator by itself, 

it was a part of the span “african american” in 65 out of 66 instances with the remaining case a part of the span “haitian 

american”. In positive prediction cases for the Latino model, three of the top 10 features are indicators, however the 

indicator “russian” is not linked to information on a patient being Latino. In contrast, the white and Asian information 

models had three indicators out of 10 tokens, all of which were directly related to their respective race categories.  
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Table 4: Counts for highly ranked salient features across positive prediction cases. A feature is 

considered highly ranked if it is one of the top three most salient features in a sentence. 

True Positive Cases False Positive Cases 

Salient Features 

Across Models 

Top Salient Feature Count 

n (% of top ranked features) 

Salient Features 

Across Models 

Top Salient Feature Count 

n (% of top ranked features) 

Black/AA  

 "african" 70 (20.8)  "caucasian" 10 (17.5) 

 "american" 66 (19.6)  "female" 7 (12.3) 

 "[SEP]" 43 (12.8)  "[SEP]" 4 (7.0) 

 "female" 30 (8.9)  "physical" 2 (3.5) 

 "aa" 16 (4.8)  ":" 2 (3.5) 

 "male" 16 (4.8)  "male" 2 (3.5) 

 "man" 12 (3.6)  "[CLS]" 2 (3.5) 

 "black" 9 (2.7)  "," 2 (3.5) 

 "woman" 8 (2.4)  "in" 2 (3.5) 

 "haitian" 8 (2.4)  "##ic" 2 (3.5) 

Asian   

 "[CLS]" 53 (22.1)  "[CLS]" 13 (33.3) 

 "[SEP]" 24 (10.0)  "[SEP]" 6 (15.4) 

 "vietnamese" 14 (5.8)  "physician" 2 (5.1) 

 "chinese" 11 (4.6)  "-" 1 (2.6) 

 "old" 9 (3.8)  "physical" 1 (2.6) 

 "to" 8 (3.3)  "," 1 (2.6) 

 "cambodian" 8 (3.3)  "with" 1 (2.6) 

 "-" 7 (2.9)  "p" 1 (2.6) 

 "male" 6 (2.5)  "81" 1 (2.6) 

 "korean" 5 (2.1)  "first" 1 (2.6) 

White  

 "white" 338 (14.2)  "[SEP]" 23 (10.0) 

 "caucasian" 235 (9.9)  "old" 21 (9.1) 

 "old" 229 (9.6)  "male" 11 (4.8) 

 "[SEP]" 222 (9.3)  "year" 10 (4.3) 

 "male" 175 (7.4)  "african" 9 (3.9) 

 "year" 146 (6.1)  ":" 9 (3.9) 

 "female" 128 (5.4)  "spanish" 9 (3.9) 

 "race" 102 (4.3)  "female" 9 (3.9) 

 "russian" 88 (3.7)  "speaking" 8 (3.5) 

 "last" 51 (2.1)  "woman" 7 (3.0) 

Latino  

 "spanish" 95 (28.5)  "speaking" 14 (25.9) 

 "speaking" 74 (22.2)  "russian" 11 (20.4) 

 "[SEP]" 23 (6.9)  "female" 7 (13.0) 

 "male" 17 (5.1)  "all" 2 (3.7) 

 "hispanic" 15 (4.5)  "chinese" 2 (3.7) 

 "only" 13 (3.9)  "man" 2 (3.7) 

 "female" 10 (3.0)  "only" 1 (1.9) 

 "interpreter" 9 (2.7)  "vietnamese" 1 (1.9) 

 "man" 7 (2.1)  "year" 1 (1.9) 

 "old" 5 (1.5)  "male" 1 (1.9) 

In true negative and false negative prediction cases, models ranked special BERT tokens “[SEP]” and “[CLS]” highly 

(Table 5). For true negative cases all models featured at least one indicator token as a highly ranked salient feature 

(e.g., “white” for the Black/AA, Asian, and Latino information models, and “vietnamese” for the white information 

model). The Asian information model ranked “american” highly in true negative cases (Table 5), all of which were 

part of the indicator span “african american” (“asian american” was only present twice in the entire Asian sentences 
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dataset). Highly ranked features for false negative (Table 5) cases did not contain any indicators in the top 10 most 

salient features and often contained special BERT tokens or language pertinent to discussing a patient’s clinical 

presentation or history (e.g., “present”, “general”, “distress”, and “history”).  

The Asian information model ranked special BERT tokens particularly high in terms of salient features.  Removing 

these tokens from consideration during ranking raised each top n metric for overall positive cases by 5-15 percentage 

points compared to the results presented in Table 3 and brought the median rank of the most salient indicator to two. 

Table 5: Counts for highly ranked salient features across negative prediction cases. A feature is 

considered highly ranked if it is one of the top three most salient features in a sentence. 

True Negative Cases False Negative Cases 

Salient Features 

Across Models 

Top Salient Feature Count 

n (% of top ranked features) 

Salient Features 

Across Models 

Top Salient Feature Count 

n (% of top ranked features) 

Black/AA  

 "[SEP]" 63 (23.9)  "[SEP]" 15 (20.8) 

 "white" 26 (9.8)  "[CLS]" 12 (16.7) 

 "[CLS]" 17 (6.4)  "present" 4 (5.6) 

 "history" 11 (4.2)  "was" 2 (2.8) 

 "." 8 (3.0)  "distress" 2 (2.8) 

 "old" 7 (2.7)  "major" 2 (2.8) 

 "distress" 6 (2.3)  "##ys" 2 (2.8) 

 "##uri" 6 (2.3)  "the" 2 (2.8) 

 "##shed" 6 (2.3)  "illness" 1 (1.4) 

 "dental" 4 (1.5)  "##par" 1 (1.4) 

Asian   

 "[SEP]" 35 (17.7)  "[SEP]" 9 (16.7) 

 "white" 27 (13.6)  "distress" 3 (5.6) 

 "male" 14 (7.1)  "general" 2 (3.7) 

 "female" 10 (5.1)  "physical" 2 (3.7) 

 "caucasian" 9 (4.5)  "[CLS]" 2 (3.7) 

 "distress" 5 (2.5)  "##lip" 2 (3.7) 

 "general" 5 (2.5)  "##mia" 2 (3.7) 

 "american" 4 (2.0)  "##les" 2 (3.7) 

 "cooperative" 4 (2.0)  "examination" 1 (1.9) 

 "corona" 4 (2.0)  "mel" 1 (1.9) 

White  

 "[SEP]" 17 (18.9)  "[SEP]" 29 (21.0) 

 "[CLS]" 11 (12.2)  "[CLS]" 25 (18.1) 

 "." 9 (10.0)  "." 12 (8.7) 

 "history" 8 (8.9)  "the" 6 (4.3) 

 "their" 3 (3.3)  "history" 5 (3.6) 

 "vietnamese" 2 (2.2)  "patient" 4 (2.9) 

 "to" 2 (2.2)  "with" 4 (2.9) 

 "]" 2 (2.2)  "through" 2 (1.4) 

 "past" 2 (2.2)  ":" 2 (1.4) 

 ")" 2 (2.2)  "on" 2 (1.4) 

Latino  

 "[SEP]" 68 (24.9)  "[CLS]" 11 (26.2) 

 "[CLS]" 55 (20.1)  "[SEP]" 10 (23.8) 

 "." 22 (8.1)  "." 3 (7.1) 

 "with" 14 (5.1)  "," 3 (7.1) 

 "a" 11 (4.0)  "history" 2 (4.8) 

 ":" 8 (2.9)  "a" 2 (4.8) 

 "white" 8 (2.9)  "in" 1 (2.4) 

 "in" 8 (2.9)  "past" 1 (2.4) 
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 "male" 5 (1.8)  "n" 1 (2.4) 

 "," 4 (1.5)  "##lip" 1 (2.4) 

 

Masked data test performance dropped when compared to the original test data for all information models, with the 

white information model performing the best (F1=0.89), followed by the Latino (F1=0.77), Black/AA (F1=0.71), and 

Asian (F1=0.70) information models. Highly salient features (tables not shown due to space) for true positive cases 

often included demographic information such as “female”, “man”, “old”, etc. Tokens related to language like 

“interpreter” and “speaking” were highly salient in the Latino, Asian, and white information models, but not the 

Black/AA model. Finally, the Black/AA model found the token “obe” (as in “obese”) highly salient, which occurred 

more often in sentences labeled with Black/AA, but was never marked as an indicator. Salient features for false 

positive cases often included “obe” for the Black/AA information model and “speaking” for the white and Latino 

information models. Negative predictions were once again dominated by “[SEP]” and “[CLS]” and were difficult to 

interpret without any indicators in the most salient features. 

Discussion 

We presented audit results on the learned associations of a deep learning model trained to identify RE information in 

clinical text by measuring the concordance between model-derived salient features and manually annotated spans of 

text that are potentially informative for RE identification. We found that model performance in terms of F1-score did 

not necessarily translate to high reliance on explicit indicators for RE as seen in the ranking metrics and highly salient 

features. Importantly, three general patterns were noted in biased or incorrect learned associations: 1) benign artifacts; 

2) helpful but not universally correct; and 3) helpful but ultimately biased and/or harmful if not addressed.  

While all BERT-based information models performed well, they were outperformed by previously vetted rule-based, 

baseline models1. The rule-based models from Sholle et al., performed surprisingly well given the shift in geography 

(Boston vs New York), deidentification of MIMIC-III clinical notes, and the focus on the critical care unit. This high 

performance across datasets can be explained by the similarities in the RE categories used, drawing from federal 

standards27.   

Overall, model classification performance did not align with ranking metric performance. The best performing model 

was the white information model, followed by the Latino, Black/AA, and Asian information models, while the Latino 

model had the best ranking metrics followed by Black/AA, white, and Asian information models. Of note, the Asian 

information model’s classification performance was similar to other models, but performed drastically worse in terms 

of ranking metrics.  While removing special BERT tokens (e.g., “[CLS”]) did improve the ranking metric for the Asian 

information model, a noticeable difference remained. This difference could be an artifact of pre-training given the 

importance of these tokens in pre-training tasks and the potential difficulty of unlearning these associations given the 

small training data for the RE identification task. 

While ranking metrics can tell us how often indicators are highly salient features, exploring highly salient tokens 

provided insight into what kinds of associations the models learned. In addition to strong evidence for plausible learned 

associations for their respective models such as “african”, “caucasian”, “chinese”, and “spanish", we found evidence 

for three categories of biased or incorrect learned associations. The first category included benign artifacts such as 

“[CLS]”, “[SEP]”, and punctuation tokens that many models ranked highly. These are likely artifacts of the pre-

training regimen for BERT models.  

The second class of learned associations included helpful but not strictly correct associations such as language 

indicator-related tokens like “speaker”, “interpreter”, “spanish”, and “russian”. Indicator tokens in sentences labeled 

with Latino were largely made up of language indicators, hence the reliance on “spanish”. However, this reliance on 

language-related tokens is not always correct. In false positive cases, when “speaking” is a top three most salient 

feature it always occurs in the context of the language indicator spans like “russian", “chinese", or “vietnamese". A 

similar association was observed for the white information model, where “speaking” and “spanish” were highly ranked 

features potentially explained by the association of language indicators (e.g., “russian") with the white label in the 

training data. Overall, this could be explained by the way these tokens are represented in a similar vector space via 

their learned contextualized word embeddings28.  

The third class of learned associations included associating indicators for other RE categories with negative predictions 

which are potentially harmful if not properly addressed. For example, the Black/AA and Asian information models 

ranked “white” and “caucasian” as highly salient features when making negative predictions. In addition, the Asian 
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information model also ranked “american” highly for true negative cases, which were always a part of the span “african 

american”. This behavior could be due to the fact that multiple race labels for the same sentence only occurred twice 

in the entire corpus. While this is not necessarily an issue in our models given that we trained one model per category, 

researchers training models in a multi-label setting would need to audit models that learn to identify all classes at once 

for this behavior. This behavior is concerning given that racial and ethnic categories are not necessarily mutually 

exclusive, and these associations could further perpetuate the erasure of multi-racial and multi-ethnic patients if 

applied without the proper skepticism. 

While we did not find evidence for learned associations with negative or stigmatizing language found in previous 

work15,16,19, the masked data results show that there exist signals even without explicit indicators present. Many highly 

salient features were shared by the original and masked saliency results, however a token relating to discussion of 

obesity (“obe”) was the only token related to a medical condition and was only highly salient for the Black/AA 

information model. Information models performed surprisingly well even with explicit indicators removed. The white 

information model performance dropped by only a few points between the masked and original test sets. Our results 

are in line with previous work19, and add to the evidence that removing explicit indicators of RE is not sufficient to 

prevent racial or ethnic biases in clinical NLP models. Unlike previous work focusing on the entire clinical note19, our 

work focused on highly curated sentences with mentions of patients, demographic features, and explicit indicators. 

The highly curated nature of the C-REACT corpus could be a contributing factor to the lack of stigmatizing or negative 

language in the highly salient features.  

The results of this work should be considered in light of three main limitations. The first is that our modeling process 

did not explore hyper-parameters that could lead to increased performance. It was not our objective to achieve state-

of-the-art performance in automated RE labeling, but rather to audit models for potentially biased learned associations. 

The second limitation speaks to the generalizability of our results. The MIMIC-III dataset represents data from a single 

hospital, specific to the critical care setting, and the training data for RE categories was relatively small for deep 

learning approaches. While we used a frozen, clinically relevant BERT model to reduce the burden of training from 

scratch, it is likely that the training data was still too small for truly generalizable learning. Finally, it has been shown 

that different models and saliency measures can provide different ranking metric results26 and so other saliency 

approaches might shed light on the full picture. Alternative approaches to measuring highly salient features might also 

take into account the random chance of a feature being ranked highly to determine highly salient and statistically 

significant features while addressing co-occurrence statistics. 

Future research could improve our work by prioritizing performance, exploring different approaches to learned 

association audits and addressing learned association biases. Given the BERT-based models did not outperform the 

baseline, future directions could include hyper-parameter tuning and further optimization to boost performance above 

the baseline. Sholle et al., measured how many patients had RE data unique to clinical notes, which we touch on in a 

publication in progress with the gold-standard dataset used here21. Exploring further approaches to auditing learned 

associations could leverage additional saliency approaches such, as vanilla gradient methods29, SmoothGrad30, or 

rationale interrogation approaches31. Future work could also focus on addressing issues identified during auditing, by 

leveraging a training regimen that balances performance while relying on the appropriate information such as the 

explicit indicators used here, which can be accomplished by combining the RE indicator and the label gold-standard 

datasets32. Solutions to learned association biases must also take into account social and historical contexts that 

influence patient and provider understandings of what are the “appropriate” associations to learn and ultimately apply 

to patients and their data. Once bias audits have been performed and concerning learned associations are found, it will 

be important for future researchers to address these biases. Certain solutions may be more technical in nature, such as 

using indicators to explicitly guide models toward appropriate learned associations during training32. However, in the 

case of negative or stigmatizing language being used by models to infer race or ethnicity, it is important to 

acknowledge that no technical solution will solve the role that systemic and personal racism has on the data generation 

process.   

Conclusion 

In this work, we presented audit results on the learned associations of a deep learning model trained to identify RE 

information in clinical text by measuring the concordance between model-derived salient features and manually 

annotated spans of text that are potentially informative for RE identification. We found three general patterns in 

incorrect or biased learned associations: 1) benign artifacts; 2) helpful but not universally correct; and 3) helpful but 

ultimately biased and/or harmful if not addressed. Furthermore, models were still able to identify RE information 

contained in sentences with explicit mentions removed. Given the literature about negative patient descriptors in 

clinical text15,16, and BERT-based models’ ability to inherit biases in the training data18, it is important to audit models 
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for unjust and/or biased associations. Auditing learned associations for bias is one approach to promoting 

interpretability, improving model trust, and ethically leveraging clinical machine learning models to recover patient-

level attributes such as RE and social determinants of health. Moving forward, understanding the “appropriate” 

associations to leverage for RE identification and other clinical NLP tasks will be important for both humans and 

machines to understand. 

Acknowledgements 

This work was supported by grants from the National Library of Medicine (OBDW, HRN, TS, AP: T15LM007079, 

LR: R01 LM006910), Intramural Research Program of the National Library of Medicine and National Institutes of 

Health (OBDW, DDF), the Computational and Data Science Fellowship from the Association for Computing 

Machinery Special Interest Group in High Performance Computing (HRN), and the NIH-funded Artificial Intelligence 

and Machine Learning for the Advancement of Health Equity and Researcher Diversity (AIM-AHEAD program. 

(OBDW). OBDW completed much of this work at Columbia University, but finished writing and editing while at the 

University of Washington. The authors would like to acknowledge Dr. Andrea Hartzler and her lab for their insightful 

feedback and comments and Dr. Trevor Cohen for GPU access. 

References 

1.  Sholle ET, Pinheiro LC, Adekkanattu P, Davila MA, Johnson SB, Pathak J, et al. Underserved populations 

with missing race ethnicity data differ significantly from those with structured race/ethnicity documentation. J 

Am Med Inform Assoc. 2019 Apr 26;26(8–9):722–9.  

2.  Elliott M, Fremont A, Morrison P, Pantoja P, Lurie N. A New Method for Estimating Race/Ethnicity and 

Associated Disparities Where Administrative Records Lack Self-Reported Race/Ethnicity. Health Serv Res. 

2008 Oct;43(5 Pt 1):1722–36.  

3.  Cook LA, Sachs J, Weiskopf NG. The quality of social determinants data in the electronic health record: a 

systematic review. J Am Med Inform Assoc. 2021 Dec 28;29(1):187–96.  

4.  Dembosky JW, Haviland AM, Haas A, Hambarsoomian K, Weech-Maldonado R, Wilson-Frederick SM, et al. 

Indirect Estimation of Race/Ethnicity for Survey Respondents Who Do Not Report Race/Ethnicity. Med Care. 

2019 May;57(5):e28–33.  

5.  Wei II, Virnig BA, John DA, Morgan RO. Using a Spanish Surname Match to Improve Identification of 

Hispanic Women in Medicare Administrative Data. Health Serv Res. 2006 Aug;41(4 Pt 1):1469–81.  

6.  Morgan RO, Wei II, Virnig BA. Improving identification of Hispanic males in Medicare: use of surname 

matching. Med Care. 2004 Aug;42(8):810–6.  

7.  Pinheiro PS, Sherman R, Fleming LE, Gomez-Marin OW, Huang Y, Lee DJ, et al. Validation of ethnicity in 

cancer data: which Hispanics are we misclassifying? Journal of registry management. 2009 Jan 1;36(2):42–6.  

8.  Hsieh MC, Pareti LA, Chen VW. Using NAPIIA to improve the accuracy of Asian race codes in registry data. 

J Registry Manag. 2011 Jan 1;38(4):190–5.  

9.  LeRoy L, Wasserman M, Rezaee M, White A. Understanding Disparities in Persons with Multiple Chronic 

Conditions: Research Approaches and Datasets. Abt Associates [Internet]. 2013 [cited 2022 Mar 24]; 

Available from: https://aspe.hhs.gov/reports/understanding-disparities-persons-multiple-chronic-conditions-

research-approaches-datasets-0 

10.  Bigback KM, Hoopes M, Dankovchik J, Knaster E, Warren-Mears V, Joshi S, et al. Using Record Linkage to 

Improve Race Data Quality for American Indians and Alaska Natives in Two Pacific Northwest State Hospital 

Discharge Databases. Health Services Research. 2015;50(S1):1390–402.  

11.  McClure LA, Koru-Sengul T, Hernandez MN, Mackinnon JA, Schaefer Solle N, Caban-Martinez AJ, et al. 

Availability and accuracy of occupation in cancer registry data among Florida firefighters. PLoS One. 

2019;14(4):e0215867.  

12.  Lybarger K, Ostendorf M, Yetisgen M. Annotating social determinants of health using active learning, and 

characterizing determinants using neural event extraction. Journal of Biomedical Informatics. 2021 Jan 

1;113:103631.  

13.  Yetisgen M, Vanderwende L. Automatic Identification of Substance Abuse from Social History in Clinical 

Text. In: Artificial Intelligence in Medicine [Internet]. Springer, Cham; 2017 [cited 2018 Jun 27]. p. 171–81. 

(Lecture Notes in Computer Science). Available from: https://link.springer.com/chapter/10.1007/978-3-319-

59758-4_18 

14.  Feller DJ, Zucker J, Bear Don’t Walk IV O, Srikishan B, Martinez R, Evans H, et al. Towards the Inference of 

Social and Behavioral Determinants of Sexual Health: Development of a Gold-Standard Corpus with Semi-

Supervised Learning. AMIA Annu Symp Proc. 2018 Dec 5;2018:422–9.  

297



15.  Sun M, Oliwa T, Peek ME, Tung EL. Negative Patient Descriptors: Documenting Racial Bias In The 

Electronic Health Record. Health Affairs. 2022 Feb;41(2):203–11.  

16.  Himmelstein G, Bates D, Zhou L. Examination of Stigmatizing Language in the Electronic Health Record. 

JAMA Netw Open. 2022 Jan 27;5(1):e2144967.  

17.  Glassberg J, Tanabe P, Richardson L, DeBaun M. Among emergency physicians, use of the term “Sickler” is 

associated with negative attitudes toward people with sickle cell disease. Am J Hematol. 2013 Jun;88(6):532–

3.  

18.  Zhang H, Lu AX, Abdalla M, McDermott M, Ghassemi M. Hurtful words: quantifying biases in clinical 

contextual word embeddings. In: Proceedings of the ACM Conference on Health, Inference, and Learning 

[Internet]. New York, NY, USA: Association for Computing Machinery; 2020 [cited 2020 Aug 25]. p. 110–20. 

(CHIL ’20). Available from: https://doi.org/10.1145/3368555.3384448 

19.  Adam H, Yang MY, Cato K, Baldini I, Senteio C, Celi LA, et al. Write It Like You See It: Detectable 

Differences in Clinical Notes by Race Lead to Differential Model Recommendations. In: Proceedings of the 

2022 AAAI/ACM Conference on AI, Ethics, and Society [Internet]. New York, NY, USA: Association for 

Computing Machinery; 2022 [cited 2023 Mar 16]. p. 7–21. (AIES ’22). Available from: 

https://dl.acm.org/doi/10.1145/3514094.3534203 

20.  Bear Don’t Walk OJ IV, Reyes Nieva H, Lee SSJ, Elhadad N. A scoping review of ethics considerations in 

clinical natural language processing. JAMIA Open. 2022 Jul 1;5(2):ooac039.  

21.  Bear Don’t Walk OJ, Pichon A, Reyes Nieva H, Sun T, Altosaar J, Joseph J, et al. C-REACT: Contextualized 

Race and Ethnicity Annotations for Clinical Text [Internet]. physionet.org; 2023 [cited 2023 Mar 16]. 

Available from: https://doi.org/10.13026/***** [Accepted for Publication] 

22.  Johnson AEW, Pollard TJ, Shen L, Lehman LWH, Feng M, Ghassemi M, et al. MIMIC-III, a freely accessible 

critical care database. Sci Data. 2016 May 24;3:160035.  

23.  Peng Y, Yan S, Lu Z. Transfer Learning in Biomedical Natural Language Processing: An Evaluation of BERT 

and ELMo on Ten Benchmarking Datasets. In: Proceedings of the 18th BioNLP Workshop and Shared Task 

[Internet]. Florence, Italy: Association for Computational Linguistics; 2019 [cited 2020 Jul 11]. p. 58–65. 

Available from: https://www.aclweb.org/anthology/W19-5006 

24.  Bear Don’t Walk Iv OJ, Sun T, Perotte A, Elhadad N. Clinically relevant pretraining is all you need. J Am 

Med Inform Assoc. 2021 Aug 13;28(9):1970–6.  

25.  Sundararajan M, Taly A, Yan Q. Axiomatic attribution for deep networks. In: Proceedings of the 34th 

International Conference on Machine Learning - Volume 70. Sydney, NSW, Australia: JMLR.org; 2017. p. 

3319–28. (ICML’17).  

26.  Ding S, Koehn P. Evaluating Saliency Methods for Neural Language Models. arXiv:210405824 [cs] 

[Internet]. 2021 Apr 12 [cited 2022 Jan 12]; Available from: http://arxiv.org/abs/2104.05824 

27.  Revisions to the Standards for the Classification of Federal Data on Race and Ethnicity [Internet]. The White 

House. [cited 2021 Dec 19]. Available from: https://obamawhitehouse.archives.gov/node/15626 

28.  Thompson L, Mimno D. Topic Modeling with Contextualized Word Representation Clusters. 

arXiv:201012626 [cs] [Internet]. 2020 Oct 23 [cited 2022 May 4]; Available from: 

http://arxiv.org/abs/2010.12626 

29.  Simonyan K, Vedaldi A, Zisserman A. Deep Inside Convolutional Networks: Visualising Image Classification 

Models and Saliency Maps. arXiv:13126034 [cs] [Internet]. 2014 Apr 19 [cited 2022 Jan 11]; Available from: 

http://arxiv.org/abs/1312.6034 

30.  Smilkov D, Thorat N, Kim B, Viégas F, Wattenberg M. SmoothGrad: removing noise by adding noise. 

arXiv:170603825 [cs, stat] [Internet]. 2017 Jun 12 [cited 2022 Apr 19]; Available from: 

http://arxiv.org/abs/1706.03825 

31.  Vafa K, Deng Y, Blei D, Rush A. Rationales for Sequential Predictions. In: Proceedings of the 2021 

Conference on Empirical Methods in Natural Language Processing [Internet]. Online and Punta Cana, 

Dominican Republic: Association for Computational Linguistics; 2021 [cited 2022 May 2]. p. 10314–32. 

Available from: https://aclanthology.org/2021.emnlp-main.807 

32.  Ross AS, Hughes MC, Doshi-Velez F. Right for the Right Reasons: Training Differentiable Models by 

Constraining their Explanations. In: Proceedings of the Twenty-Sixth International Joint Conference on 

Artificial Intelligence [Internet]. Melbourne, Australia: International Joint Conferences on Artificial 

Intelligence Organization; 2017 [cited 2021 Dec 29]. p. 2662–70. Available from: 

https://www.ijcai.org/proceedings/2017/371 

 

298


