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1 Introduction

We introduce the basics of the representation theory of finite groups in characteristic zero. In the sequel, all
groups G will be finite and all vector spaces V will be finite dimensional over C. We first define representa-
tions and give some basic examples. Then we discuss morphisms and subrepresentations, followed by basic
operations on representations and character theory. We conclude with induced and restricted representa-
tions and mention Frobenius Reciprocity. These notes are intended as the background to the UMS summer
seminar on the representation theory of symmetric groups from [AMV04]. The author learned this material
originally from [FH] and recommends this source for more detail in the following; many of the proofs in the
sequel likely come from this source.

2 Definitions and Examples

Representation theory is the study of groups acting on vector spaces. As such, we have the following
definition:

Definition 1. A representation of a group G is a pair (V, ρ) where V is a vector space over C and ρ is a
homomorphism ρ : G→ GL(V ). We will often refer to representations by their vector space and assume that
the morphism ρ is clear from context. Every representation defines a unique C[G]-module, with the action
of G on V being g · v = ρ(g)(v) and vice versa. We refer to the dimension of the representation, defined to
be dimV .

With the definition in mind, we begin with a few examples.

Example 2. Let G be any group and V any vector space. Let ρ be the identity morphism. This defines a
representation When dimV = 1 we call this the trivial representation.

Example 3. Let G be a finite group and let

V =
⊕
g∈G

Cg

the vector space generated by elements g ∈ G. There is a natual action of G on V given by g ·h = (gh) with
multiplication in the group G. This defines a representation that we refer to as the regular representation.

Example 4. Let G = Sn be the symmetric group and let V = C be one dimensional. Recall that there is a
homomorphism ε : Sn → {±1} called the sign homomorphism. We may define a representation g · v = ε(g)v
that we call the alternating representation.

Example 5. Let G = Sn and let V be an n-dimensional vector space with basis v1, . . . , vn. Define the
action σ · vi = vσ−1(i). This representation is called the standard representation.

Now that we have a definition of what a representation is, we may wish to make a nice category. For this
we need morhpisms.
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Definition 6. Given two representations (V, ρ), (V ′, ρ′) of a group G, we define a morphism ϕ of represen-
tations as a linear map ϕ : V → V ′ that commutes with the action of G, in that ρ(g)(ϕ(v)) = ϕ(ρ(g)(v)).
In other words, the following diagram commutes for all g ∈ G:

V V

V ′ V ′

ρ(g)

ϕ ϕ

ρ′(g)

An isomorphism is a bijective morphism. Given two representations we let Hom(V,W ) = HomG(V,W ) be
the set of morphisms (G-equivariant linear maps) from V to W . Note that it has the structure of a vector
space.

Clearly the composition of morphisms is again a morphism. Now that we have the concept of isomorphism,
when we refer to a representation we will generally be referring only to a representation up to isomorphism.

Now there are several important functorial constructions associated with a representation. The first is
the direct sum. Let V and W be representations of G. Then we may define the representation V ⊕W with
action g · (v, w) = (g · v, g · w) with dimV ⊕W = dimV + dimW We may form the tensor product V ⊗W
with associated action g · (v ⊗ w) = (g · v) ⊗ (g · w) and the dual representation V ∗ with associated action
ρ∗(g) = ρt(g−1). Symmetric and exterior powers of representations may be defined by quotienting subspaces
of tensor powers; it is left to the reader to check that these subspaces are subrepresentations. We recall
Hom(V,W ) = V ∗ ⊗W (if you do not know this, prove it!) and so we may define a representation structure
on Hom(V,W ). We now need the concept of a subrepresentation.

Definition 7. Let V be a representation of G. A subspace W ⊂ V is a subrepresentation if it is stable
under the action of G, i.e., G ·W = W . We call a representation simple (or irreducible) if it has no nontrivial
subrepresentations.

Example 8. Let V be any representation of G. Then the subspace W = {0} is stable under the action of
G and so W ⊂ V is a subrepresentation. Similarly, V ⊂ V and is clearly stable under the action of G so this
is also a subrepresentation. For any morphism ϕ : V → W , note that kerϕ ⊂ V is a subrepresentation and
similarly for Imϕ ⊂W .

Example 9. Let G be any group and let V be a two dimensional representation with trivial G-action. Then
any subspace of V is a subrepresentation.

Example 10. Let G = S3 and let V be the standard representation of Example 5. Then consider the space
W = C · (v1 + v2 + v3). This is a 1-dimensional subrepresentation.

Given a subrepresentation, a natural question to ask is how this subrepresentation splits off. The answer
to this is as nice as we could possibly want:

Proposition 11. Let W ⊂ V be a sub representation. Then there is another subrepresentation W ′ ⊂ V
such that V = W ⊕W ′ splits as representations of G.

Proof. Note first that if there is a G-equivariant inner product, 〈·, ·〉, then we may define

W⊥ = {v ∈ V |〈w, v〉 = 0, for all w ∈W}

Then V = W ⊕W⊥. Moreover, for any v ∈W⊥, g ∈ G, we have for all w ∈W ,

0 = 〈v, w〉 = 〈g · v, g · w〉 = 〈g · v, g · (g−1w′)〉 = 〈g · v, w′〉

where w′ = g · w ∈ W by assumption of W being a subrepresentation. Thus g · v ∈ W⊥ and so we may set
W ′ = W⊥. Now, choose an arbitrary inner product 〈·, ·〉0 on V and define

〈v, v′〉 =
1

|G|
∑
g∈G
〈g · v, g · v′〉0

Then it is clear that 〈·, ·〉 is a G-equivariant inner product and we are done. �
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Example 12. Consider the situation of Example 8. Then the complementary subrepresentation W ′ is just
W ′ = {av1 + bv2 + cv3|a + b + c = 0}. To see this, we may introduce the inner product 〈vi, vj〉 = δij and
compute to see that it is G-equivariant.

By applying descent on the dimension of a representation, Proposition 11 immediately yields that all
representations are direct sums of simple representations and so it suffices to study simple representations.

Remark 13. Note that the conclusion of Proposition 11 is manifestly false in general if either char k > 0 or
G is infinite, although if G is compact and k = C then many of the results hold. Fortunately, since the goal
of these notes is to prepare for [AMV04], these issues are immaterial here.

One of the important results that governs the morphisms between representations is the classical Schur’s
lemma.

Proposition 14 (Schur’s Lemma). Let V,W be simple representations of G and let ϕ : V →W . Then ϕ is
either 0 or an isomorphism. Moreover, if V = W then ϕ is just an action by scalars. Thus we have

Hom(V,W ) =

{
C V ∼= W

0 V 6∼= W

Thus every representation can be uniquely expressed as a direct sum of simple representations.

Proof. Recall from Example 8 that kerϕ ⊂ V is a subrepresentation of V . Because V is simple, we have
either kerϕ = V or kerϕ = 0. Similarly Imϕ ⊂ W and so Imϕ = 0 or Imϕ = W . The first statement
follows immediately. Now suppose ϕ : V → V is a morphism. Then because C is algebraically closed, ϕ
must have an eigenvalue λ. But then we have ϕ − λ · id : V → V has nonzero kernal and so by the above
result this must be the zero map. Thus ϕ = λ · id. The penultimate statement follows immediately, as does
the last statement. �

Example 15. We may use Proposition 14 to classify all simple representations of an abelian group G.
Suppose V is a simple representation of G abelian and for some g ∈ G, let ϕ : V → V be v 7→ g · v. Then
ϕ is linear by definition and for any g′ ∈ G we have g′ · ϕ(v) = (g′g) · v = (gg′) · v = ϕ(g′ · v) and so ϕ
is a morphism of representations. Thus by Proposition 14, we have that ϕ(v) = λv for some λ ∈ C. But
this then means that if W ⊂ V is any subspace then it is stable under the action of G and so it is indeed a
subrepresentation. Thus if V is simple then dimV = 1.

3 Restriction and Induction

Recall that following the definition of a morphism, there were a few functorial constructions described. Each
of these had a fixed group and the representation changed. A natural question is what to do if one wishes
to fix instead the representation and change the group. There are two functorial constructions that do this.

Definition 16. Let H < G be a subgroup and let V be a representation of G. Then we define the restriction
of V to H, ResGH V to be the representation (V, ρ|H). Note that we will omit one or both of the groups from
the notation if context makes such redundant.

Example 17. This concept is pretty intuitive, but one important fact to note is that the restriction of
a simple representation is no longer necessarily simple. Indeed, recall from Example 12 that we identified
W ′ = {av1 + bv2 + cv3|a+ b+ c = 0} as a (two dimensional) representation of S3. It is easy to check by hand
(or using the results of § 4) that this representation is simple. Now, let H = S2 identified in the normal way
as a subgroup of S3. Then U = ResHW

′ is manifestly not simple. Indeed S2 fixes v3 so the space spanned
by v1 + v2 − 2v3 is stable under the action of S2 and so is a subrepresentation.

The complement to restriction is induction:

Definition 18. Let H < G and let V be a representation of H. We define

IndGH V := C[G]⊗C[H] V
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Equivalently, if R is a set of representatives of G/H then we define

IndGH =
⊕
s∈R

sV

with the obvious action of g · (sw) = s′ · (hw) where gs = s′h and s′ ∈ R. Note that we will omit the groups
from the notation if the context makes such redundant.

Example 19. There is an action of G on R which leads naturally to a representation of G, say W . Then
it is immediate that W = IndGH V where V is the trivial representation of H. An extreme example of this is
the regular representation from Example 3 where we just let H = {1}. Then IndG V is exactly the regular
representation.

It is easy to see that both of these operations are transitive, i.e., if we have K < H < G are groups and
V is a representation of K and W is a representation of G, then

IndGH(IndHK V ) = IndGK V and ResHK(ResGHW ) = ResGKW

While this fact is immediate, it might be a good idea to check your understanding by showing this. When
we called Res and Ind complementary, we meant that they are adjoint functors in the following sense:

Proposition 20 (Frobenius Reciprocity I). Let H < G be groups, W a representation of H and V a
representation of G. Then

HomH(W,ResV ) = HomG(IndW,V )

Proof. Let

V =
⊕
s∈R

s ·W

and let ϕ : W → ResU . Now define ϕ̃ by the following composition

s ·W W V Vs−1 ϕ s

Note that because ϕ is H-equivariant, this definition is independent of choice of R. The inverse construction
takes ψ : IndW → U and restricts to ψ|W . These are clearly inverses so we are done. �

Another version of this statement will be seen in the following section.

4 Character Theory

While Proposition 11 allows us to consider only irreducible representations, it can be difficult to tell if a rep-
resentation is simple just by staring at it. Moreover, we might wonder how many irreducible representations
there are and how we might find them all. These questions are all answered by character theory.

Definition 21. Given a group G and a representation V we define the character, χV : G → C defined by
χV (g) = Tr(ρ(g)).

Example 22. The character of the trivial representation is (unsurprisingly) the trivial character taking
χ(g) = 1 for all g ∈ G. If G is the alternating representation of G = Sn then χ(σ) = ±1 depending on the
sign of the permutation.

Example 23. For any representation V , we have χV (1) = dimV by definition. Now let V be the regular
representation for some group G and g 6= 1 ∈ G. Considering g as a matrix with respect to the basis given
by elements of G, we see that for any h in this basis, g · h = gh 6= h. Thus the main diagonal of g is all
zeroes and so has trace 0. Thus

χV (g) =

{
|G| g = 1

0 g 6= 1

for V the regular representation.
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One of the reasons we use characters is that they behave well with respect to functorial transformation
of represntations. We have χV⊕W = χV + χW , χV⊗W = χvχW and χ∗V⊕W = χV . These are easy to show
by considering what happens to the eigenvalues of g in each of these transformations. Another nice thing
about characters is that they are class functions, i.e., they are constant on conjugacy classes of G, a fact
that follows immediately from the fact that the trace of a linear map is independent of basis.

Now, let V G = {v ∈ V |g · v = v for all g ∈ G} be the space of invariants. Then consider the map

ϕ(v) =
1

|G|
∑
g∈G

g · v

that projects V → V G (i.e., ϕ2 = ϕ and Imϕ = V G). Then we have

dimV G = Trϕ =
1

|G|
∑
g∈G

χV (g)

by linearity of trace. Now we note that Hom(V,W )G is just the space of G-equivariant linear maps, or
G-morphisms and we have χHom(V,W ) = χV ∗⊗W = χV χW by above. Now if we take V,W simple, then we
may apply Proposition 14 to get

1

|G|
∑
g∈G

χV (g)χW (g) =

{
1 V ∼= W

0 otherwise

This idea leads us to define an inner product on the space of class functions of G by

(χ, ψ) =
1

|G|
∑
g∈G

χ(g)ψ(g)

The above ideas lead to the following omnibus result:

Proposition 24. Let G be a group. With respect to the above inner product, the characters of the irreducible
representations are orthonormal. A representation V of G is uniquely determined by its character χV and
the multiplicity of some irreducible representation W in V is (χV , χW ). Thus (χV , χV ) =

∑
a2i and so a

representation is simple if and only if (χV , χV ) = 1.

Proof. The first statement follows from above. The second statement follows from the third and Proposi-
tion 11. Let V = ⊕W⊕aii be the decomposition of V into irreducible representations. Then χV =

∑
aiχi

and so we have
(χV , χWi

) =
∑

ai(χWj
, χWi

) = ai

by orthonormality. Thus we have

(χV , χV ) =
∑
i,j

(aiχWi
, ajχWj

) =
∑

a2i

The last statement follows because V is simple if and only if there is a unique ai 6= 0 and then we must have
ai = 1. �

Example 25. We apply Proposition 24 to the regular representation V of Example 3. Recalling Example 23,
we know χV . Thus we note by Proposition 24 that

(χV , χWi
) =

1

|G|
(|G| · χWi(1)) = dimWi

and so the regular representation contains all of the irreducible representations with multiplicity the dimen-
sion of the representation.

Now we will use the above result to count the irreducible representations of a group G but first we need
a lemma.

5



Lemma 26. For α : G→ C any function define for any representation V

ϕα =
∑

α(g)g : V → V

Then ϕα is a morphism of representations if α is a class function.

Proof. Let h ∈ G arbitrary. Then

ϕα(h · v) =
∑
g∈G

α(g)g(h · v) =
∑

hgh−1∈G

α(hgh−1)hgh−1(h · v)

= h
∑

α(hgh−1)g · v

and

h · ϕα(v) = h ·
∑
g∈G

α(g)g · v

The above are equal if α(g) = α(hgh−1) if and only if α is a class function. �

Proposition 27. Given a group G, the set of characters {χW } ranging over all irreducible representations
W is an orthonormal basis for the space of class functions on G.

Proof. We have shown that {χW } is orthonormal so it suffices to show that they span the class functions,
or that any class function α such that (α, χW ) = 0 for all W satisfies α = 0. Consider ϕα : W → W for W
irreducible defined in Lemma 26. By Proposition 14, we have that ϕα = λ · id and we have

λ =
1

dimV
Trϕα =

1

dimV

∑
g∈G

α(g)χW (g) =
|G|

dimV
(α, χW∗) = 0

Thus ϕα = 0 on all representations V . Now let V be the regular representation from Example 3. Then we
have

0 = ϕα(1) =
∑

α(g)g(1) =
∑

α(g)g

but the regular representation is defined such that the g are independent so α(g) = 0 for all g ∈ G and so
α = 0. �

Corollary 28. The number of irreducible representations of G is equal to the number of conjugacy classes
of G.

Proof. By Proposition 24, the number of irreducible representations of G is the dimension of the space of
characters of G. By Proposition 27, this space is the space of class functions of G, which has dimension the
number of conjugacy classes of G, compute by taking a basis dual to the set of conjugacy classes of G. �

Example 29. Let us consider the example of S3. Recall that conjugacy classes in Sn correspond bijectively
to integer partitions of n. The partitions of 3 are (3), (2, 1), and (1, 1, 1) which means we expect three
irreducible representations of S3. We have the trivial and alternating examples already. Computing the
character of W ′ from Example 12, we see immediately that (χW ′ , χW ′) = 1 and so, by Proposition 24 it is
the last irreducible representation.

We conclude with Frobenius reciprocity. Recall from Proposition 20 that we were able to relate induced
and restricted representations. Because characters determine everything about a representation, we might
expect a similar relation to hold with respect to characters. We are not disappointed.

Proposition 30 (Frobenius Reciprocity II). Let H < G be groups and define (·, ·)H , (·, ·)G to be the inner
products on class functions of H,G respectively. Let V be a representation of H and let W be a representation
of G. Then we have

(χIndW , χV )G = (χW , χResV )H

Proof. By linearity, it suffices to assume that W,V are simple. Then (χW , χResV )H is the multiplicity of
W in ResV , which is just dim Hom(W,ResV ) and (χIndW , χV )G is the multiplicity of V in IndW , which is
dim Hom(V, IndW ). But by Proposition 20, we have Hom(W,ResV ) = Hom(V, IndW ) so we are done. �
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