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1 Introduction

Nonsingularity is the algebrogeometric equivalent of differentiability in a suitably defined sense. Over C, for
instance, the nonsingular varieties correspond to complex manifolds. Over fields of positive characteristic,
various complications arise, and notions distinguishing such terms as smooth, normal, nonsingular, etc.
are of vital importance. For the sake of simplicity, we restrict ourselves to working over C, although we
occasionally mention ways in which the sequel applies to varieties over arbitrary fields. We begin by defining
nonsingularity of affine varieties and giving examples before applying an important result of Zariski to extend
the theory to arbitrary varieties.

All rings will be taken to be noetherian and commutative with identity.

2 Algebraic Preliminaries

We must first introduce a few algebraic preliminaries. The notion of an algebraic derivative is central.

Definition 1. Let A be a k-algebra, M an A-module. A map d : A→M such that for all u, v ∈ A, a ∈ k,

• d(u+ v) = d(u) + d(v)

• d(a) = 0

• d(uv) = ud(v) + d(u)v

is called a derivation.

We care about derivations d : A → A, where A is a finite type k algebra, in particular when d is an
algebraic partial derivative. This will serve as our motivating example

Example 2. Let f ∈ k[x1, ..., xn]. Then we can define

df =
∂f

∂xi

where
∂

∂xi
(xj) =

{
1 i = j

0 otherwise

is our normal notion of derivative. Of course, in fields in which we can apply analysis, such as R or C,
this definition agrees with the analytic notion; the advantage here is that this definition greatly extends the
analytic one to more general fields. Note that over fields of positive characteristic, some notions may not
match our intuition. For instance if char k = p > 0, then d(xp) = pxp−1 = 0, thus yielding a nonconstant
polynomial with derivative 0.

The next notion that we need is that of a regular local ring. For the sake of completeness, we recall a
few facts from earlier lectures.
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Definition 3. A ring R is local if and only if it has a unique maximal ideal, m (recall that Zorn’s lemma
implies that all nontrivial rings have at least one maximal ideal). The Krull Dimension of a ring R is

dimR = max
p⊂R

(ht p)

or equivalently is the dimension of SpecR as a topological space.

We recall the following result without proof:

Proposition 4. Let (R,m) be a local ring. Let S be the set of ideals of definition, I, of R, i.e., there exist
m,n ∈ N such that mm ⊂ I ⊂ mn. Let δ(I) be the minimal number of generators of I. Then

dimR = min
I∈S

δ(I)

Definition 5. If (R,m) is a local ring, then let κ be its quotient field, i.e., R/m = κ. Then m/m2 is naturally
endowed with a κ vector space structure. We say that R is regular local (or just regular) if

dimκm/m
2 = dimR

Remark 6. Note that using Proposition 4, because m in particular is an ideal of definition, we get that
in general dimκm/m

2 ≥ dimR. Thus regularity occurs when this dimension is minimal. A theorem from
commutative algebra states that a ring is regular local if and only if it is a UFD.

Remark 7. For the experts, note that we can extend our definition of regularity to include all Noetherian
rings and drop the local assumption. To do this, we prove that regular local rings are exactly those with
finite projective dimension. This property is stable under localization so we get a well defined concept of
regularity if we say that a ring R is regular if and only if for all primes p ⊂ R, Rp is regular local.

Example 8. Note that if A = k[x1, ..., xn] then A(x1,...,xn) is regular local. To see this, note that dimA = n.
In fact, we can localize at any closed point of Ank to get a regular local ring.

Example 9. As an example of a local ring that is not regular, consider A = (k[x, y]/(x3 − y2))(x,y). Note
that dimA = 1 because dim k[x, y] = 2 and we are quotienting out by one element that is not in the minimal
prime. However, dimκm/m

2 = 2 with {x, y} as a basis.

Recall that if X = V (f1, ..., fr) ⊂ An, then the local ring of X at the point P = (a1, ..., an) is defined to
be OP = (k[x1, ..., xn]/(f1, ..., fr))(x1−a1,...,xn−an). We are now ready to proceed to nonsingularity.

3 Nonsingularity

Before we define nonsingularity in general, we will consider the affine case. Our definition of nonsingularity
is motivated by our notion of smoothness of manifolds. Thus a natural choice is to use a derivative and check
when the Jacobian has full rank. This will be our starting point. Let X ⊂ Ank be an algebraic set defined by

the ideal I = (f1, ..., ft). We define the Jacobian at the point P , JP = ( ∂fi∂xj
(P )). Note that this agrees with

our intuition coming from the study of manifolds.

Definition 10. If X is an affine variety of dimension r as above, then for P ∈ X, we say that X is
nonsingular at P if rk JP = n− r. If X is not nonsingular at P , then we say that X is singular at P . If X
is nonsingular at all points P , then we say that X is nonsingular. Otherwise, X is singular.

As a first example, let us consider X = V (x3 − y2) ⊂ A2. Then we get that if P = (a, b), then

JP =
[
3a2 −2b

]
Note that as long as a, b are not both 0, then rk JP = 1 = 2−1 and X is nonsingular at P . But for P = (0, 0),
JP = 0 and X is singular. As an example of a nonsingular variety, consider X = V (x2 − y).
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The above definition is all very well, but it has a few key drawbacks. First, it is not a priori obvious that
the singularity of a point is independent of the choice of generators of I, although row reductions yield a
solution to this quite quickly. More importantly, it is not at all clear that nonsingularity is independent of
affine embedding and that nonsingularity behaves well with respect to isomorphisms. Perhaps most seriously,
our definition does not readily lend itself to generalizing to non affine varieties. The following result is the
key theorem that allows us to do all of these.

Theorem 11. Let X ⊂ An be an affine variety. Then X is nonsingular at P if and only if OP is a regular
local ring.

Proof. Let P = (a1, ..., an) ∈ kn and let p be the corresponding maximal ideal in A = k[x1, ..., xn] (i.e.
p = (x1 − a1, ..., xn − an)). We define a derivation θP : A→ kn by

f 7→ (
∂f

∂x1
(P ), ...,

∂f

∂xn
(P ))

We note two things. First, θP (xi − ai) = (0, ..., 1, ..., 0) ∈ kn, with a 1 in the ith spot and zeros elsewhere.
Second, θ((xi − ai)(xj − aj) = (0, 0, ..., xj − aj , ..., xi − ai, ..., 0)|xi=ai,xj=aj = 0. Thus, θP (p2) = 0. Thus we
see that θP induces an isomorphism θ : p/p2 → kn of vector spaces.

Now let q = (f1, ..., ft) ⊂ A be a prime ideal generated by the fi and let X = V (q) ⊂ An. By definition of
θP , we have that rk JP = dimk θP (q) when θP (q) ⊂ kn is viewed as a k-vector space. We can now apply the
isomorphism θ and note that θ−1 ◦ θP (q) = (q+ p2)/p2 ⊂ p/p2 because we are simply taking q and modding
out by p2. We note that the local ring of X at P is just

OX,P = (A/q)p

with maximal ideal m = (q + p)/q. Thus we get that m2 = (q + p2)/q. Modding out, we get that m/m2 =
p/q + p2. Now, let V = p/p2. Then letting q′ be the image of q in p/p2, we get that V/q′ ⊕ q′ = V and
counting dimensions, we get

dimk m/m
2 + dimk p/(q + p2) = dimk p/p

2 = n

Thus we have that dimk m/m
2 + rk JP = n or, equivalently, rk Jp = n − dimk m/m

2 ≤ n − dimOX,P by
Remark 6. By a result from an earlier lecture, dimOX,P = r. By the definition of regularity, the result
follows. �

With Theorem 11, we are able to extend our definition

Definition 12. Let X be a variety, P ∈ X a point. We say that X is nonsingular at P if OP is a regular
local ring; otherwise we say that X is singular at P . We say that X is nonsingular if X is nonsingular at
all points P ; otherwise X is singular.

Remark 13. It is important to note several important things. One is that Theorem 11 immediately resolves
all three of our troubles with the naive definition. If X = V (I) is a variety, then it is clear that the particular
choice of generators of I chosen are irrelevant. More importantly, if X ′ is another variety and φ : X → X ′

is an isomorphism, then for all P ∈ X, OX,P ∼= OX′,φ(P ) so X is nonsingular at P if and only if X ′ is
nonsingular at φ(P ). Finally, because the stalk (local ring) at a point is defined for arbitrary algebraic sets,
it is clear that this definition is much more general than the naive one.

Example 14. We considered X = V (y2 − x3) ⊂ A2 above as an example of a variety that is singular at P ,
the origin. In Example 9, we saw that OX,P was not regular.

Example 15. Above, we saw that X = V (y−x2) ⊂ A2 is nonsingular. Let P = (a, a2) ∈ X. Then we have
that

OX,P = (k[x, y]/(y − x2))(x−a,y−a2) ∼= k[x](x−a,x2−a2) ∼= k[x](x)

Note that this is clearly a regular local ring.
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Example 16. We can even extend our definition to algebraic sets. Let X = V (xy) ⊂ A2, the union of two
lines meeting each other at the origin. Let P = (0, 0). We have

OP = (k[x, y]/(xy))(x,y)

We have dimOP = 1 but dimk m/m
2 = 2. This is a special case of the more general fact that the intersection

of two or more irreducible components is always singular.

It may be difficult to tell from the examples cited to date, but there are two salient remarks to be made.
The first is that demonstrating nonsingularity from the definition is not an easy thing to compute. It is in
general not fun to compute the dimension of a ring and to prove exactly what that dimension is; the naive
way was much easier, albeit less general. It might behoove us to extend this method to projective varieties,
and so we do exactly that.

Proposition 17 (Jacobi Criterion). Let X = V+(I) ⊂ Pn be a projective variety of dimension r such that
f1, .., ft ∈ S = k[x0, .., xn] are homogeneous polynomials that minimally generate I. Let P ∈ Y be given by
homogeneous coordinates [a0 : ... : an]. Then Y is nonsingular at P if and only if rk JP = n− r.

Before we begin the proof, we need a lemma.

Lemma 18 (Euler). Let f ∈ k[x0, ..., xn] be a homogeneous polynomial of degree d. Then

n∑
i=0

xi
∂f

∂xi
= df

Proof. Note that by linearity and homogeneity, it suffices to prove the result on monomials. Let

f =

n∏
i=0

xαi
i

Then

xi
∂f

∂xi
= αixix

αi−1
i

∏
j 6=i

x
αj

j = αi

n∏
j=0

x
αj

j = αif

Thus, summing over all i gives
n∑
i=0

xi
∂f

∂xi
=

n∑
i=0

αif = df

�

Proof of Proposition 17. We must first note that the rank of JP is well defined because JP is not. We define
JP = ( ∂fi∂xj

(α0, ..., αn)). Given P ′ ∼ P , then P ′ = (λa0, ..., λan) for some λ ∈ k×. If f is homogeneous then

so is ∂f
∂xj

so if we let deg fi = di then

JP ′ = (
∂fi
∂fj

(P ′)) = (λdi−1
∂fi
∂xj

(P ))

So the rows of JP ′ are the rows of JP scaled by constants. Thus rkJP = rk JP ′ and this is a well defined
notion.

Now note that because regualrity is a local condition, it suffices to restrict to an affine open. After some
reordering of the subscripts, it suffices to show the result on U0 = {z ∈ Pn|z0 6= 0}. Let yi = xi

x0
. Then X is

regular at P = (x0 : ... : xn) if and only if X ∩ U0 is regular at P ′ = (1, y1, ..., yn). Let

J ′P =
(

∂
∂yj

(fi(1, y1, ..., yn))
)
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Then we get by Theorem 11 that X ∩U0 is regular at P ′ if and only if rk J ′P = n−r. Thus it suffices to show
that rk J ′P = rkJP . Up to the change of variable xi

x0
= yi, note that J ′P is the right (n− 1)× t submatrix of

JP and that the left most column of JP is given by ∂fi
∂x0

(P ). But by Lemma 18,

n∑
j=0

xj
∂fi
∂xj

= dfi

so, solving for ∂fi
∂x0

, and noting that for any point P ∈ X, we have fi(P ) = 0, we get for all P ∈ X,

∂fi
∂x0

= d
fi
x0
− 1

x0

n∑
j=1

xj
∂fi
∂xj

= −
n∑
j=1

yj
∂fi
∂yj

Thus this first column of JP is a linear combination of the columns in J ′P so rk JP = rkJ ′P and we are
done. �

Example 19. Consider X = V+(y2z−x2) ⊂ P2 at the point P = [0 : 0 : 1]. Note that this is just embedding
V (y2− x3) ⊂ A2 ↪→ P2 with the point (0, 0) 7→ [0 : 0 : 1]. Thus we expect X to be singular at P . Indeed, we
get

JP =
[
−3x2 2yz y2

]
so Jp = 0 at P as expected.

Example 20. One thing to remember is that 0 6∈ Pn. Thus, consider the variety X = V+(x2+y2+z2) ⊂ P2.
Let P = [a : b : c]. Then,

JP = 2
[
a b c

]
with full rank equal to 1. Clearly (0, 0, 0) is on the surface Y with rank 0 if we were to consider Y =
V (x2 + y2 + z2) ⊂ A3, but this is not the case for P2.

The second thing to note is that the set of points that are singular in a variety Y , Y sing is pretty small.
We can make this statement rigorous.

Theorem 21. Let Y be a variety. Then Y sing ⊂ Y is a proper closed subset.

Proof. Recall that any variety Y can be covered by affine opens, i.e., there exist Yi for 1 ≤ i ≤ m such that
Y =

⋃
Yi. Clearly, it suffices to prove the result for the affine opens, so assume Y is affine of dimension

r. Thus Y = V (f1, ..., ft) ⊂ An. By Theorem 11, the singular points of Y are those points P such that
rk JP < n − r. Let J = ( ∂fi∂xj

). Then we get less than full rank if one of the determinants of one of the

(n− r)× (n− r) submatrices is 0. Let d1, ..., dm ∈ OAn . Then one a point P = (a1, ...., an) has JP less than
full rank if and only if p = (x1 − a1, ..., xn − an) ⊃ (d1, ..., dm) = I ′. Thus, Y sing = V (I) ∩ V (I ′) ⊂ An is
closed.

To see that Y sing is proper, we recall that if Y is a variety then it is birational to a hypersurface in Pn. It
suffices to check on affine opens; thus it suffices to show the result for Y = V (f) ⊂ An. Then the dj in the

above paragraph become particularly simple: dj = ∂f
∂xj

. We know that f is irreducible so r(f) = (f) and we

can apply the Nullstellensatz to get taht dj ∈ (f). But deg dj ≤ deg f − 1 so f - dj unless dj = 0. Thus we

have that ∂f
∂xj

= 0 for all 1 ≤ j ≤ n and so f is constant, contradicting the fact that Y is a variety. �

Remark 22. The above proof actually holds in greater generality. In particular if Y is a variety over k,
with char k = p > 0, the result still holds. To see this, note that every step above holds until the part where
we assumed ∂f

∂xj
= 0 for all j implies that f = 0. In the positive characteristic case, all this means is that

f ∈ k[xp1, ..., x
p
n] = OY (p) . But k is algebraically closed so each coefficient is a pth power. Thus there exists

some g ∈ OY such that f = gp, contradicting the fact that f is irreducible.

5



Intuitively, Theorem 21 tells us exactly what we wanted: that Y sing is small. In an intuitive sense, the
closed sets in the Zariski topology are relatively small and the open sets are relatively big. In the case
of curves, we have the profinite topology and so Y sing is actually a finite set. Moreover, the intuition of
nonsingular sets being small extends to arbitrary algebraic sets. Even if Y is irreducible, then the extra
points in Y sing that come from intersections of irreducible components are of smaller dimension than Y and
so are suitably ”small” as desired.
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