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1 The Basics of Probability Theory

1.1 The Measure Theory Background

While measure theory is hardly pleasant, it is an unfortunate prerequisite to the subsequent discussion. We
briefly review some relevant concepts. A thorough treatment of the topic can be found in [Dur10, Chu00]
and any other introduction to probability theory.

Definition 1. A probability space is a triple (Ω,F,P) where Ω is a set, F is a σ-algebra, and P : F → [0, 1]
is a measure that takes full measure on the entire set, i.e., P(Ω) = 1. A random variable with state space
(S, S) with law P is a measurable map X : Ω→ S.
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The most important probability measures for the first few lectures have Ω ⊂ R. Then we may define a
distribution function

Definition 2. Given a probability space (Ω,F,P) such that Ω ⊂ R and F ⊂ B(R), we define the distribution
function F : R→ [0, 1] such that if X is a random variable with law P, then P(X ≤ x) = F (x).

Several properties of these functions are immediately apparent. For instance, F is a nondecreasing,
right-continuous function such that

lim
x↓−∞

F (x) = 0 lim
x↑∞

F (x) = 1

We are now ready for some examples.

Example 3. Let δ0 denote the point mass at 0, i.e., Ω = {0}, F = ℘(Ω) and P is the unique probability
measure on F. The distribution function is

F (x) =

{
0 x < 0

1 x ≥ 0

Similarly, if we take any point x = (x1, . . . , xn) in an (n + 1) simplex, and we take any n real numbers
a1, . . . , an, we may consider the probability measure that places mass at point ai with probability xi.

An important special case of the previous example is a Bernoulli random variable. We say that X is
Bernoulli with parameter p if P(X = 1) = p and P(X = 0) = 1− p.

Example 4. We call the lebesgue measure on [0, 1] the uniform probability distribution on the unit interval.
It has distribution function

F (x) =


0 x < 0

x 0 ≤ x ≤ 1

1 x > 1

More generally, for any borel subset of R (that is not Lebesgue measure 0), we may define the uniform
probability distribution on it by scaling the Lebesgue measure so that the total mass is 1.

The next fundamental concept is that of expectation.

Definition 5. First let X be a random variable with law P such that P(X < 0) = 0. Then we define
EX =

∫
XdP. In general, if at least one of EX+ or EX− is finite, then we define EX = EX+ − EX−.

Clearly, as taking expectation is just integration, the standard integral properties carry over, such as
linearity, monotinicity, dominated convergence, and Fatou. Another important property that carries over
mutatis mutandis is

Theorem 6 (Fubini). Let µ, ν measures on Ω,Ω′ and let µ ⊗ ν denote the product measure. Let f a
measurable function on Ω× Ω′ such that f ≥ 0 or

∫
|f |dµ⊗ ν <∞. Then∫

Ω

∫
Ω′
fdνdµ =

∫
Ω′

∫
Ω

fdµdν =

∫
Ω×Ω′

fdµ⊗ ν

With expected value, we have a powerful new way to create probability measures. Let µ be a measure
on some probability space Ω and suppose that f ≥ 0 is a measurable function such that

∫
Ω
fdµ = 1. Then

consider the function P : F → [0, 1] given by P(A) =
∫
A
fdµ. It is easy to check that this is a probability

measure.

Example 7. Let Ω = {0, 1} and suppose µ({1}) = p. If f(0) = 1−p′
1−p and f(1) = p′

p then P is the law of a

Bernoulli p′ r.v..
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Example 8. The best examples of the above method are what are sometimes called “probability density
functions” in undergraduate probability classes. In this case, µ is the lebesgue measure and one can take
any nonnegative function that integrates to 1. The most important example of this is the Gaussian. We say
that X is Gaussian of mean θ and variance σ2 if

P(X ∈ A) =

∫
A

(√
2πσ2

)− 1
2

exp

(
− (x− θ)2

2σ2

)
µ(dx)

Other examples include the exponential, when f(x) = e−x1(x ≥ 0), the Cauchy distribution when f(x) =(
π(1 + x2)

)−1
, and many, many more.

A natural question arises: if P and µ are probability measures on the same space, when can we find a
function f as in the above discussion? One thing to note about the above construction in relating P to µ is
that if A ∈ F such that µ(A) = 0, then clearly P(A) = 0 as well. This motivates

Definition 9. Let µ, ν be two measures on the same σ-algebra. We say µ � ν, that µ is absolutely
continuous with respect to ν if for all sets A such that ν(A) = 0, then we have µ(A) = 0 as well.

Thus we see that P � µ is certainly a necessary condition for there to exist such an f . In fact, it is
sufficient as well, which is the content of the following theorem, whose proof can be found in [Dur10].

Theorem 10 (Radon-Nikodym). Let P� ν be two probability measures on the same space. Then there is a
µ-almost everywhere unique measurable function, f , called the Radon-Nikodym derivative, such that for all
measurable sets A,

P(A) =

∫
A

fdµ

Remark 11. The Radon-Nikodym derivative is often denoted dP
dµ and this is not mere coincidence. One can

show that many of the laws of normal calculus, such as the chain rule, hold here too.

We now introduce the concept that separates probability from measure theory: that of independence.

Definition 12. A collection of events {Ai} is independent if for any finite collection of events Ai1 , . . . , Ain ,
we have

P

⋂
j

Aij

 =
∏
j

P
(
Aij
)

A collection of σ-algebras is independent if any collection formed by taking an event from each algebra is
independent.

Note that the requirement “any finite collection” is stronger then just checking any pair (this is called
pair-wise independence). To see this, let X,Y, Z be iid Bernoulli 1

2 r.v.s and consider the following events

A1 = {X = Y } A2 = {Y = Z} A3 = {X = Z}

Then P(Ai ∩Aj) = 1
4 = P(Ai)P(Aj), but

P(A1 ∩A2 ∩A3) =
1

4
6= 1

8
= P(A1)P(A2)P(A3)

Independence is crucial to the understanding of probability, but it is really a very simple concept. One can
think of X,Y being independent as meaning that information about X allows no inference on Y , an intuition
that will be explained somewhat in the sequel.

We conclude this sprint through some prerequisites with the following classical result:

Proposition 13 (Markov). Let ϕ : R→ R≥0 and let A ∈ B(R). Let

iA = inf
a∈A

ϕ(a)

Then iAP(A) ≤ E [ϕ(X)1A] ≤ Eϕ(X).
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Proof. By definition we have iA1A ≤ ϕ(X)1A. Taking expected values yields the first inequality. The second
follows because ϕ ≥ 0. �

Remark 14. This is most commonly used to provide moment bounds. Let ϕ(x) = |x|p. Then applying
Proposition 13 to X − EX, we have that for all ε > 0,

P(|X − EX| > ε) ≤ E[|X − EX|p]
εp

Where the numerator on the right is called the pth central moment. When p = 2 we get the classic Chebyshev
inequality that says

P(|X − EX| > ε) ≤ VarX

ε2

1.2 Types of Convergence

One of the important series of definitions in a first course in probability is the types of convergence that
one can witness. Recalling that a random variable X is a function, the easiest type of convergence might be
pointwise convergence, i.e., Xn(ω)→ X(ω) for all ω ∈ Ω. As we shall see, however, in probability, one often
cares little about events of probability zero and often we have random variables only defined up to a null
set. Thus this is too stringent a definition. It can be replaced with

Definition 15. If (Xn) is a sequence of random variables we say that Xn → X P-almost surely if

P ({ω ∈ Ω|Xn(ω)→ X(ω)}) = 1

While this definition is natural, and often useful, it is at times too stringent. Thus we have

Definition 16. We say that a sequence of random variables converges in probability, Xn
p−→ X if for all

ε > 0,

lim
n→∞

P(|Xn −X| > ε) = 0

It is immediate that the first type of convergence implies the second, but the implication is one-way.

Example 17. Let Xn be standard Gaussians. Let Yn = Xn
n . Then Yn

p−→ 0. To see this, note that a
computation gives VarYn = 1

n2 and so Proposition 13 will immediately yield the desired result. In this case,
we have almost sure convergence as well, which can be proven using Lemma 27 in the sequel.

If instead of considering pointwise convergence in our analogy with functional analysis, we had considered
Lp convergence, we arrive at

Definition 18. A sequence of random variables, (Xn) converges toX in Lp for some p > 0 if E [|Xn −X|p]→
0.

This is a useful concept as it is often easy to bound this expected value, but it then becomes subordinate
to convergence in probability by the following proposition

Proposition 19. Suppose there is a p > 0 such that Xn → X in Lp. Then Xn
p−→ X.

Proof. This follows directly from Proposition 13. To see this, note that for any ε > 0, we may apply
Proposition 13 with ϕ(x) = |x|p and get

P(|Xn −X| > ε) ≤ E [|Xn −X|p]
εp

→ 0

as desired. �

The final type of convergense we need is convergence in distribution:
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Definition 20. Let (Xn) a sequence of random variables and let Fn be the distribution functions of their

laws. We say that Xn
d−→ X, or Xn converges to X in distribution if X follows a distribution F and such

that for all x ∈ R such that F is continuous at x, Fn(x)→ F (x).

This type of convergence is much weaker because it says nothing about the relationship between the
random variables themselves; all the convergence treats is the laws of the random variables.

Example 21. Suppose that Xi ∼ N(µi, σ
2) are independent and suppose that n−

1
2

∑n
1 µi converges to

some µ as n → ∞. Then n−
1
2

∑n
1 Xi

d−→ X where X ∼ N(µ, σ2). This is because a simple computation
shows that if Z1, Z2 are independent Gaussian of means µ1, µ2 and variances σ1, σ2 then Z1 +Z2 is gaussian
of mean µ1 + µ2 and variance σ1 + σ2. The scaling and the hypothesis yield the result.

The most important example of convergence in distribution is the second pillar of classical probability.

Theorem 22 (Central Limit Theorem). Let X1, . . . be iid random variables with mean 0 and variance 1.

Then n−
1
2

∑n
1 Xi

d−→ Z where Z is gaussian of mean 0 and variance 1.

The proof of this theorem was one of the great advances in early 20th century mathematics. While we will
not discuss it much here, the concept underlies much of what we do, especially our (optional) construction of
Brownian motion and why we care so much about the Gaussian distribution. Note also that the independence
condition can be somewhat weakened as explored in, e.g., [Bil61, Bro71].

The general idea for the proof of Theorem 22 lies in the notion of a characteristic function. Given two
random variables X,Y one might wonder if there is an easy way to tell if they have the same distribution.
Clearly if they have the same distribution then E[Xk] = E[Y k] for all k such that these are well defined. If
we restrict to the class of distributions that have moments of all orders, then we might wonder if the fact

that E[Xk] = E[Y k] for all k implies that X
d
= Y . Unfortunately, this is not the case (see [Dur10, vdV12]).

However, if these moments grow slowly in k then this is indeed the case. In fact we have

Proposition 23. Let ϕ be the moment generating function for X, i.e., if there exists some open interval of
0 such that the following is finite, then we define

ϕ(λ) = E
[
eλX

]
=
∑ λk

k!
E
[
Xk
]

If ϕX = ϕY as functions then X
d
= Y .

However, we note that this condition of finiteness might be hard to check and does not even apply in
many instances. A more general technique is

Proposition 24. Let ψ be the characteristic function of some random variable X, i.e.,

ψX(λ) = E
[
eiλX

]
Then ψ is well defined for all distributions on R and X

d
= Y if and only if ψX = ψY .

For proofs of these results, see [Dur10, Chu00, vdV12]. Moreover, characteristic functions help determine

convergence in distribution. In fact, Xn
d−→ X if and only if ψXn → ψX pointwise. One way to prove

Theorem 22 relies upone this fact.

1.3 The Law of Large Numbers and Borel Cantelli

We ignore history and present the law of large numbers after the central limit theorem. The result is very
intuitive, and was first conjectured by Cardano in an effort to improve his gambling; the proof, however,
took centuries.

Proposition 25 (The “Very” Weak Law of Large Numbers). Let X1, X2, . . . be pairwise independent random
varaibles with EXi = µ and VarXi ≤ σ2 <∞. Then

Xn =

∑n
i=1Xi

n

p−→ µ
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Proof. By translation we may assume that µ = 0. By linearity, EXn = 0. By pairwise independence,

E
[
X

2

n

]
=
∑n
i=1 E[X2

i ] ≤ nσ2. But then

E
[
X

2

n

]
≤ nσ2

n2
=
σ2

n
→ 0

and so, applying Proposition 19, we are done. �

While this proof was obviously very easy, it is not a particularly strong result (hence the title of very
weak). Without too much trouble, the second moment requirement could be eliminated, but the real progress
that can be made is in the type of convergence that is guaranteed. We can significantly strengthen this result
as follows

Theorem 26 (Strong Law of Large Numbers). Let X1, X2, . . . be pairwise independent, identically dis-
tributed random variables with EX1 = µ. Then Xn → µ P-almost surely.

We will not give a proof of this here, although one may find one in [Dur10, Chu00]. We will, however,
need a key technique in the proof that will have great utility for the remainder of the series. If we are given
events A1, A2, . . . on a probability space, we can consider the following events

lim supAn =
⋂
n

⋃
m≥n

Am lim inf An =
⋃
n

⋂
m≥n

Am

We say in the former case that An happens infinitely often, or i.o., while in the latter case we say that An
happens eventually. The following lemma gives an easy condition on the probability of something happening
infinitely often.

Lemma 27 (Borel-Cantelli). BC I Let A1, A2, . . . be events on a probability space. Suppose

∞∑
i=1

P(Ai) <∞

Then P(An i.o.) = 0.

BC II Conversely, suppose that A1, A2 are independent events and that

∞∑
i=1

P(Ai) =∞

Then P(An i.o.) = 1.

Proof. (I): We introduce the random variable

X =

∞∑
i=1

1Ai

the number of Ai that occur. Note that a summation is just integration with respect to the counting measure
and, since X ≥ 0, we may apply Theorem 6 to get that

EX = E

[ ∞∑
i=1

1Ai

]
=

∞∑
i=1

E[1Ai ] =

∞∑
i=1

P(Ai) <∞

But then X <∞ P almost surely. Thus the first Borel-Cantelli lemma is proved.
(II): Let 0 < m < n < ∞. We show that the probability of the complement of {An i.o.} is zero. Note

that

P

(
n⋂
m

Aci

)
=

n∏
m

(1− P(Ai)) ≤
n∏
m

e−P(Ai) = e−
∑

P(Ai) → 0
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as n→∞. But

P ({An i.o.}c) = P

⋃
m

⋂
n≥m

Acn

 ≤∑
m

P

 ⋂
n≥m

Acn

 = 0

as desired. �

As an easy example we can prove a weak version of Theorem 26.

Example 28. Suppose that X1, . . . are independent and identically distributed such that E|X1|4 ≤ K <∞.
Let Sn = X1 + · · ·+Xn. We may, after translation, assume that EX1 = 0. Then we see that

S4
n =

∑
X4
i +

∑
X3
iXj +

∑
X2
iX

2
j +

∑
X2
iXjXk +

∑
XiXjXkX`

Taking expectations, all but the first and third sums drop out. Counting these terms and bounding the
square of the variance shows that ES4

n ≤ Kn2. Thus we have

P
(∣∣∣∣Snn

∣∣∣∣ > ε

)
≤ E[S4

n]

n4ε4
≤ K

n2ε2

Let An be the event in the above line. Then
∑

P(An) < ∞ and so by Lemma 27, we have that |Xn| < ε
eventually for all ε > 0, which gives the result.

2 Discrete Time Stochastic Processes

We first review the notion of conditional expectation before giving a brief preview of stochasatic processes
in discrete time. Our guiding example is the random walk, as we will turn to Brownian motion following
this section. Good introductions and reviews of this theory exist in [Chu00, Dur10, Kar91, Law06].

2.1 Conditional Expectation

In many undergraduate probability courses, conditional probabilities are defined only on discrete spaces or
in terms of a probability density function. In the first setting, students often consider expressions of the
form

P(X = x|Y = y) =
P(X = x and Y = y)

P(Y = y)

This expression clearly only makes sense when P(Y = y) 6= 0 and so one runs into problems in the continuous
case. The undergraduate approach is to treat a probability density function, f as the probability that Y = y,
even though of course this is not true. This then gives the expression for the probability density function
fX|Y of

fX|Y (x, y) =
f(x, y)∫

f(x, y)dP(x)

With conditional probability established, these courses then proceed to introduce conditional expectation.
The problem with this approach is that it does not generalize to probability spaces that are not discrete
or absolutely continuous with respect to the Lebesgue measure. Thus we will adopt Kolmogorov’s solution,
which is to define conditional expectation using Theorem 10 and then define conditional probability as
P(X ∈ A|F) = E [1A|F].

Definition 29. Let G ⊂ F be σ-algebras and let X an F-measurable integrable random variable. Then we
say that Y = E[X|G] if Y is G-measurable and for all A ∈ G we have∫

A

Y dP =

∫
A

XdP

If A ∈ F is an event, then P(A|G) = E[1A|G].
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Remark 30. Note that even assuming existence, our definition is only up to sets of probability zero and thus
technically we may only discuss conditional expectation as an equivalence class of random variables, where
two variables are equivalent if they differ only on a null set. In practice this will not come up.

We need to establish that such a variable exists.

Proposition 31. As in the definition above, E[X|G] exists, is unique up to a null set, and is integrable.

Proof. We first show that if Y = E[X|G] in that it satisfies the two conditions then it is integrable. Let
A = {Y > 0}. Then we see ∫

A

Y dP =

∫
A

XdP ≤
∫
A

|X|dP <∞∫
Ac
Y dP =

∫
Ac
XdP ≤

∫
Ac
|X| <∞

and so E[|Y |] ≤ E[|X|] <∞ and so integrability has been established.
To show uniqueness, if Y, Y ′ are two G-measurable random variables satisfying the condiition in the

definition, then for all ε > 0, let Bε = {Y ′ − Y ≥ ε} and we have

0 =

∫
B

(X −X)dP =

∫
B

(Y ′ − Y )dP ≥ εP(B)

Sending ε ↓ 0 gives Y ≤ Y ′ P-almost surely. Switching the places of Y, Y ′ gives the result.
For existence, if X ≥ 0 then we may define

µ(A) =

∫
A

XdP

for A ∈ G and by Theorem 10 we have that there exists Y which is G-measurable such that∫
A

XdP = µ(A) =

∫
A

Y dP

for all A ∈ G. To treat the general case, apply the above to the decomposition X = X+ −X−. �

While this definition is certainly sufficiently general, it is possible that the motivation and intuition
behind it is slightly lacking at this point. To recount, we now think of conditional expectation as a random
variable, which might seem a little bit odd. Of course, to be given the name “expectation” it should satisfy
certain properties of integrals, such as monotonicity, lineartiy, and convergence properties; it is easy to see
that this definition does indeed satisfy these. The following examples should clarify some of the intuition.

Example 32. It should be clear from the definition that E[X|X] := E[X|σ(X)] = X and, more generally,
if X is F-measurable, then E[X|F] = X. This makes sense because if X is F-measurable already, then
information in F should not improve our knowledge of X.

On the other hand, if X is independent from X then E[X|F] = E[X]. To see this, note that clearly E[X]
is F-measurable and that if A ∈ F then∫

A

XdP = E[X1A] = E[X]E[1A] =

∫
A

E[X]dP

Example 33. Now suppose that {Ai} is a countable collection of disjoint events such that P(Ai) > 0 and
P (
⋃
iAi) = 1. Let F = σ(A1, A2, . . . ). Then on Ai,

E[X|F] =
E [X1Ai ]

P(Ai)

To see this, it is enough to check this on Ai for some i. But then it is clear that∫
Ai

XdP = E [X1Ai ] =

∫
Ai

E [X1Ai ]

P(Ai)
dP
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Setting X = 1B we recover

P(X ∈ B|Ai) =
P(Ai ∩B)

P(Ai)

the identity from an undergraduate class.

Example 34. Let X,Y be random variables on R and let their joint distribution be absolutely continuous
with respect to Lebesgue with Radon-Nikodym derivative f(x, y), i.e., if A ∈ B(R2) then

P((X,Y ) ∈ A) =

∫
A

fdxdy

Let g be a function such that E[|X|] <∞ and define

g̃(y) =

∫
R g(x)f(x, y)dx∫

R f(x, y)dx

Then we claim that E[g(X)|Y ] = g̃(Y ). To see this, let A ∈ σ(Y ), then A = Y −1(A′) for some A′ ∈ B(R)
and so

E [g(X)1A] = E [g(X)1A′(Y )] =

∫
A′

∫
g(x)f(x, y)dxdy =

∫
A′
g̃(y)

∫
f(x, y)dxdy =

∫
A′

∫
g̃(y)f(x, y)dxdy = E[g̃(Y )1A]

by definition of g̃. It is clear that this recovers the probability density function approach to conditional
probability if we set g(x) = x.

Example 35. Finally, we will derive the classic Bayes’ theorem from statistics. Let B ∈ G. Suppose that
B is an event of positive probaility. We may then define

P(A|B) =
P(A ∩B)

P(B)

The classic Bayes formula asserts that

P(A|B) =
P(B|A)P(A)

P(B)

To show this, we suppose that A ∈ G and we note that∫
Ω

E [1B |G] (P(A ∩B)− P(B)1A)dP = 0

Rearranging gives

P(A|B) =

∫
A
P(BG)dP∫

Ω
P(B|G)dP

Now, if G = σ(A1, A2, . . . ) is a countable partition of Ω, then this reduces, by Example 33 to the standard
Bayes theorem of

P(Ai|B) =
P(B|Ai)P(Ai)∑
i P(B|Ai)P(Ai)

=
P(B|Ai)P(Ai)

P(B)

2.2 Martingales and the Random Walk

Now that we have defined conditional expectation, we are able to push forward and get to one of the
most important concepts in probability: martingales. Our introdcution of martingales will primarily be
accomplished with a single motivating example: the random walk.
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Definition 36. We say that (Mn,Fn) is a martingale if Fn ⊂ Fn+1 for all n are σ-algebras, Mn is Fn-
measurable and integrable, and E [Mn+1|Fn] = Mn for all n. If instead we have E [Mn+1|Fn] ≥ Mn this is
called a submartingale and if we have E [Mn+1|Fn] ≤Mn this is called a supermartingale. If no filtration is
specified, we will assume that Fn = σ(M1, . . . ,Mn).

The standard example that we will use for a martingale is the random walk. Let X1, X2, . . . be iid
random variables such that E[X1] = 0. Then we call Sn = X1 + · · · + Xn a random walk. It is easy to
see that this is a martingale. If 0 < E[X1] < ∞ then this is a submartingale and the third case yields a
supermartingale. A standard random walk that we will be considering throughout the lecture is called the
simple symmetric random walk where X1 is ±1 with equal probability. Another example of a martingale is
given if ϕ(θ) = E

[
eθX1

]
< ∞ for some θ > 0. Then we define Wn = (ϕ(θ))−neθSn the Wald martingale. It

is an easy exercise to check that this is a martingale.
One of the concepts that will recur again and again is that of a stopping time.

Definition 37. Let (Fn) be a filtration of σ-algebras. Then τ is an Fn-stopping time if τ is a random time,
τ : Ω → N ∪ {∞} such that {τ ≤ n} ∈ Fn for all n. A stopped stochastic process, (Mτ

n) is defined for a
stopping time τ as Mτ

n = Mn∧τ .

This definition makes intuitive sense if we consider Fn to be the aggregate information up until time n.
Then for {τ ≤ n} ∈ Fn means that the information of whether or not we have reached τ is known at each
time. The term “martingale” originally described a betting strategy; if we adopt this, we can imagin that a
stopping time is a time at which a gambler (who cannot see into the future) can decide to stop playing.

Example 38. The easiest examples of stopping times are constants, τ = c. Another classic example is the
hitting time. If A ⊂ R we may define τ = inf{n|Mn ∈ A}. This will be used to great effect with the random
walk, where we let Mn = Sn and we consider τ = inf{n|Sn = a} for some fixed a. In this case, we have
Sτn = a for all n > τ (we will see that τ is almost surely finite in certain cases).

We are now ready to introduce the discrete stochastic integral and give an example of its applications.

Definition 39. We say that (Hn) is a predictable sentence for Fn if Hn is Fn−1-measurable for all n. We
then define the discrete stochastic integral as

(H ·M)n =

n∑
k=1

Hk(Mk −Mk−1)

We note that this definition of predictable is perfectly intuitive. Once again, we consider Fn to be the
information that we have at time n. Thus a sequence is predictable if and only if we can predict Hn from
time n− 1. In the gambler analogy, we may consider Hn to be bets that are placed; since a gambler cannot
see into the future, they may only place bets based on information that they already have, prior to the next
role of the dice.

Proposition 40. If Mn is a martingale and Hn is a predictable sequence such that each Hn is bounded then
(H ·M)n is a martingale. If instead Mn is either a sub- or supermartingale and additionally Hn ≥ 0 then
(H ·M)n is still a sub- or supermartingale.

Proof. We prove only the martingale case as the others are identical. If Hn is bounded then clearly (H ·M)n
is integrable so it suffices to compute E[(H ·M)n|Fn−1]. We compute

E [(H ·M)n|Fn−1] =

n∑
k=0

E[Hk(Mk −Mk−1)|Fk−1] = (H ·M)n−1 + E [HnMn −HnMn−1|Fn−1]

= (H ·M)n−1 +HnE[Mn|Fn−1]−HnMn−1 = (H ·M)n−1

�

As an example, we can show that a stopped martingale is still a martingale. To do this, let Hn =
1− 1τ≤n−1 for some stopping time τ . Clearly Hn is predictable. But we note that Hn = 1− 1τ<n = 1τ≥n
and a quick computation reveals that Mτ

n = (H ·M)n.

10



One strong application of the discrete stochastic integral is to the question of convergence. Fix a < b
and let Mn be a submartingale (we could do this equally well for supermartingales of course), and let

τ2k−1 = inf{n > τ2k−2|Mn ≤ a}
τ2k = inf{n > τ2k−1|Mn ≥ b}
Un = sup{k|τ2k ≤ n}

The τ2k−1 and τ2k are stopping times that are struck when our stochastic process either goes below a or
above b. The Un are the number of upcrossings, the times that our process goes from below a to above b.
We have

Lemma 41 (Upcrossings Inequality). If Mn is a submartingale and Un is as above then we have

(b− a)EUn ≤ E
[
(Mn − a)+

]
− E

[
(M0 − a)+

]
Proof. Let Xn = a+ (Xn − a)+. Let

Hn =

{
1 τ2k−1 ≤ n ≤ τ2k for some k

0 otherwise

Then Hn is a predictable sequence because τn are stopping times. We may think of Hn as a betting strategy
where if Mn is the price of a stock, then we buy one share as soon as the price drops below a and we hold on
to this share until the price rises above b, when we sell it. With this intuition, an easy computation shows
that (b − a)Un ≤ (H · X)n, because each upcrossing adds at least b − a to our capital and because of the
definition of X, anything after the last upcrossing adds something nonnegative to our portfolio. If we let
Kn = 1−Hn then we see (H · Y )n + (K · Y )n = Yn − Y0. By Proposition 40, (K · Y )n is a submartingale so
E[(K · Y )n] ≥ E[(K · Y )0] = 0 and so E[(H · Y )n] ≤ E[Yn − Y0]. Putting this all together yields the desired
result. �

The above result is incredibly useful and clever application of Lemma 41 gets one quite far. An important
such application is the following

Theorem 42. If Mn is a submartingale such that supE [M+
n ] < ∞ then there exists an integrable random

variable M∞ such that Mn →M∞ P-almost surely.

Remark 43. Of course, we could have established a downcrossing inequality for supermartingales and then
shown Theorem 42 and gotten the same theory. The above clearly also applies to supermartingales by
considering M ′n = −Mn and then the condition becomes supE [M−n ] <∞. Moreover, this result establishes
submartingales as the analogue of increasing sequences. Thus, this theorem is the probabilistic analogue of
the statement that increasing sequences that are bounded above converge to a finite limit.

Proof. Note that for any x ∈ R, (x− a)+ ≤ |x|+ |a|. Thus Lemma 41 yields

E[Un] ≤ |a|+ E [M+
n ]

b− a

for any a < b. By hypothesis, E [M+
n ] ≤ C < ∞ for some C ∈ R. As Un is increasing, we may take U =

supUn <∞ almost surely. But then this suggests, because Q is countable, that by countable subadditivity,

P

 ⋃
a,b∈Q

{lim inf Mn < a < b < lim supMn}

 ≤ ∑
a,b∈Q

P ({lim inf Mn < a < b < lim supMn}) = 0

Thus Mn →M∞ almost surely for some random variable M∞.
To show that M∞ is integrable, we use Fatou’s lemma. Note that

E
[
M+
∞
]
≤ lim inf E

[
M+
n

]
<∞

11



and similarly

E
[
M−n

]
= E

[
M+
n

]
− E[Mn] ≤ E

[
M−n

]
− E[M0]

and so, again by Fatou, we have

E
[
M−∞

]
≤ lim inf E

[
M−n

]
≤ supE

[
M+
n

]
− E[M0] <∞

Thus M∞ is integrable. �

Aside from Martingale convergence, another major theorem in the theory of martingales is the optional
stopping theorem:

Theorem 44 (Optional Stopping). Let M be a submartingale and suppose that σ ≤ τ are stopping times.
Then E[Mτ |Fσ] ≥Mσ if either of the following is true:

i) There is some M <∞ such that P(σ ≤ τ ≤M) = 1

ii) We have E[τ ] < ∞ and there is some C < ∞ such that E[|Mn+1 − Mn||Fn] ≤ C almost surely on
{τ ≥ n}

Clearly if M is a supermartingale or martingale we have the corresponding (in)equality in the statement of
the theorem. It should also be noted that there are a number of other conditions that guarantee Theorem 44;
we omit them for the sake of brevity.

Example 45. The intuition for Theorem 44 should be obvious. If M is a martingale then we know that
E[Mn|Fm] = Mm for all m < n fixed. Thus if one is to go from fixed times to more general stopping times,
one might näıvely expect a similar result to hold. To give an example of why we need these conditions,
consider Sn the symmetric simple random walk. We may consider each Xi as a flip of a coin where we win
if we get 1 and we can consider a predictable sequence Hn as a betting strategy. We may start by betting
1 and if we win we quit. If we lose, we double our bet. We can iterate this to get a predictable sequence.
We have seen that Sn is a martingale and so by Proposition 40, we have that (H · S)n is also a martingale.
Let τ = inf{n|(H · S)n > 0}. We will see below (and it is easy to take on faith) that P(τ <∞) = 1, and an
easy analysis shows that (H · S)τ = 1 almost surely and so E[(H · S)τ ] = 1. Thus, this strategy guarantees
that we make a dollar! As we shall see below, E[τ ] =∞ and so we might have to wait a while (and go into
serious debt) before we win.

Proof. We prove only the first case for martingales and refer the reader to [Dur10, Chu00] for the other case
(and other conditions) and merely state that the proofs for sub- and supermartingales are essentially the
same. In the first case we have

E[Mτ ] = E[Mτ
M ] = E[Mτ

0 ] = E[M0]

by the corollary of Proposition 40 giving that stopped martingales are martingales and the definition of a
martingale. �

We are now ready to begin our analysis of the random walk. Recall that Xi are iid such that E[Xi] =
µ < ∞. Consider Mn = Sn − nµ. It is easy to see that Mn is a martingale. Let −a < 0 < b and let
τ = inf{n|Sn 6∈ (−a, b)}. If E[τ ] < ∞, then note that we are in the second case of Theorem 44 and so
E[Mτ ] = E[M0] = 0. By linearity we have

0 = E[Mτ ] = E[Sτ ]− E[τµ] = E[Sτ ]− µE[τ ]

This is known as Wald’s first equation. Let us apply this in the case of the simple symmetric random walk.
Note that P(Sb+a 6∈ (−a, b)) ≥ 2−(a+b) because the path that just goes up has at least this probability. But
then we have P(τ > n(a+ b)) ≤

(
1− 2−(a+b)

)n
and so by Theorem 6, we have

Eτ =
∑
i

P(τ > i) ≤ C
∑
n

P(τ > n(a+ b)) ≤
∑
n

(
1− 2−(a+b)

)n
<∞
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Thus we are in the situation of Theorem 44 and so E[Sτ ] = E[τ ]E[X1] = 0 because E[X1] = 0. But Sn moves
exactly 1 at each time step so Sτ = −a with probability pa and Sτ = b with probability pb = 1− pa. Thus
we have pbb− paa = 0 and solving this and pb + pa = 1 yields

P(Sτ = −a) =
b

a+ b
P(Sτ = b) =

a

a+ b

We can do more, however. Let E[X2
1 ] = σ2 <∞ and let M̃n = S2

n − nσ2. Then

E
[
M̃n+1|Fn

]
= E

[
(Sn +Xn+1)2 − (n+ 1)σ2|Fn

]
= S2

n − nσ2 + E
[
X2
n+1|F\

]
− σ2 = M̃n

and so M̃n is a martingale. Letting τ be as above, we note that we are still in the situation of Theorem 44

and so we have E
[
M̃τ

2
]

= 0. Thus E[S2
τ ] = E[τ ]σ2. But σ2 = 1 and Sτ ∈ {−a, b}, so, plugging in, we get

E[τ ] = a2 b

a+ b
+ b2

a

a+ b
= ab

Thus the expected time to leave the interval (a, b) is ab. Now, if c > 0, we may ask what the expected time
to reach c is. Let τ ′ = inf{n|Sn = c}. By the fact that we may only get to c if we have first reached c− 1,
we have that τ ′ = τ(−∞,c−1). Now note that τ(−a,b) > τ(−a+1,b) and we may apply monotone convergence to
get that

Eτ ′ = lim
a→∞

E[τ(−a,c)] = lim
a→∞

ab =∞

Recalling our betting strategy above, we might have a long time to wait before we win our dollar!
As another example of an application of Theorem 44, let Xi, Sn be as in the symmetric simple random

walk above. Let ϕ(θ) = E
[
eθX1

]
= cosh θ. We let

Wn =
eθSn

ϕ(θ)n
W0 = 1

we saw earlier that (Wn) is a martingale. Let τ = inf{n > 0|Sn = 1} and let τn = τ ∧ n. Then τn is a
stopping time placing us in the situation of Theorem 44 so

1 = E[W0] = E [Wτn ] = E
[

eθSτ∧n

(cosh θ)τ∧n

]
but

0 <
eθSτn

(cosh θ)(τ∧n)
<

eθ

cosh θ

So by dominated convergence we have

1 = E
[

lim
n→∞

Wτn

]
= E

[
eθ

cosh θ
1{τ<∞} + lim

n→∞
Wn1{τ=∞}

]
But 0 < Wn < (cosh θ)−neθ on {τ = ∞} for all n so limWn = 0 almost surely on {τ = ∞}. Thus we have
for all θ > 0 that

E

[
eθ1{τ<∞}

cosh θ

]
= 1

Sending θ ↓ 0 and applying dominated convergence shows that P(τ < ∞) = 1 and so the probability that
Sn eventually visits 1 is 1. By symmetry this is true for -1 as well. The random walk satisfies Sn − Sk is
independent of Fk for all n ≥ k ≥ 0 so once we have visited 1, we move either to 2 or 0 and repeat the
argument. By induction, we may apply this same argument to any integer in Z. We have thus proved:
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Proposition 46. Let Sn be the simple symmetric random walk. For any integer a ∈ Z, let τ = inf{n|Sn =
a}. Then both of the following are true:

P(Sn = a i.o.) = 1

E[τ ] =∞

Thus Sn visits every integer infinitely many times but the expected time to visit any integer is infinite.

As a slight digression, we could prove the first of these statements without martingales pretty easily. We
call an event A exchangeable if for all X = (X1, X2, . . . ) discrete time stochastic processes on our probability
space and π a permutation of N that fixes all but finitely many values, we have (πX)(A) = X(A) almost
surely. We let E be the σ-algebra of exchangeable events. The following is true, and a proof can be found in
[Chu00, Dur10]:

Theorem 47 (Hewitt-Savage 0-1 Theorem). If X1, X2, . . . are iid and A ∈ E is an exchangeable event, then
P(A) ∈ {0, 1}

We may use this theorem to prove

Proposition 48. Let Sn be a random walk on R. Then exactly one of the four events occurs with probability
1:

1. −∞ = lim inf Sn < lim supSn =∞

2. limSn → −∞

3. Sn →∞

4. For all n, we have Sn = 0

Proof. Notice that if A = {lim supSn = c} then A is exchangeable so by Theorem 47, we have P(A) ∈ {0, 1}
and so lim supSn = a is constant. But note that S′n = Sn+1 −X1 has the same distribution as Sn so if a is
finite then we have a = a−X1 or X1 = 0. By the fact that Xi are iid, we have that Sn = 0 for all n. Thus
if we are not in the last case, then lim sup ∈ {∞,−∞}. The same analysis can be applied to lim inf Sn and
the possibilities are listed above. �

Now note that if X1, X2, . . . are iid and P(X1 = 0) < 1 then we are not in the last case. If the distribution

of the Xi is symmetric about 0, in that −X1
d
= X1, then −Sn

d
= Sn and so cases (2) and (3) are impossible.

Thus the first case holds. If we are in the case of the simple symmetric random walk, then because Sn has
to hit all integers on its traversal of Z, this implies the first statement of Proposition 46.

The above statement is one of recurrence. Let τa be the hitting time of a. We say that Sn is recurrent if
P(τa <∞) = 1 for some (and hence all) a. Otherwise it is transient. We state the following theorem for the
interest of the reader (a proof can be found in [Dur10]):

Theorem 49. Let Sn be a random walk in R. If n−1Sn
p−→ 0 then Sn is recurrent. If Sn is a random walk

in R2 and n−
1
2Sn

d−→ X for some random variable X then Sn is recurrent.

Examples of how this theorem can be applied abound. For the second case, note that Theorem 22 yields
that if E[|Xi|2] <∞ then the random walk Sn is recurrent.

3 Brownian Motion and the Random Walk

3.1 An Introduction to Brownian Motion

We have as our canonical example of a stochastic process in discrete time considered a random walk. A
natural question of how we might turn this into a continuous time setting arises. A näıve way would be to
take a random walk and linearly interpolate between the discrete times. One might then wonder, however,
at the arbitrary nature of when these discrete jumps are taking place. Thus we might take a limit of the
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time between these discrete “jumps” going to zero. Donsker’s invariance theorem formalizes this notion and
says that the (scaled) limit of these random walks is given precisely by Brownian motion.

The theory of stochastic processes in discrete time is largely devoid of technicalities, but the same cannot
be said for that in continuous time. In the sequel, we will often cite proofs of results that require a standard
of rigor that is too technical for this series and thus the goal of the talk is more to give a taste of the relevant
concepts than to provide a rigorous introduction to the foundations. Books which do the latter include
[Kar91, RY99, Dur10, Mö10, Oks19] in descending order of rigor.

Definition 50. A filtration in continuous time (Ft)t≥0 is a collection of σ-algebras such that if s < t then
Fs ⊂ Ft. A stochastic process (Xt)t≥0 is a collection of random variables adapted to Ft in that Xt is
Ft-measurable. We call the random functions t 7→ Xt the sample paths of Xt. A continuous martingale
is (Mt,Ft) is a stochastic process with continuous sample paths such that if s < t then E[Mt|Fs] = Ms.
Continuous analogues of sub- and supermartingales are defined similarly.

Remark 51. One of the technicalities of note is the continuity of filtrations. For instance, we may define

Ft+ =
⋂
s>t

Fs

and note that this is a σ-algebra. We may define Ft− similarly. When Ft 6= Ft+ there can be technical
issues that require more sophisticated techniques such as augmentation. This is certainly important as the
natural filtration of Brownian motion, Ft = σ((Bs)s≤t) is not even right continuous. We will elide over this
by assuming that there is some sufficiently nice filtration and think of this no further.

We may now define Brownian motion

Definition 52. A (standard one-dimensional) Brownian motion is a stochastic process (Bt)t≥0 satisfying

i) The sample paths are almost surely continuous

ii) For all n and all 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn, the random variables Bt1 , Bt2 − Bt1 , . . . , Btn − Btn−1
are

independent

iii) (Bt) is stationary in the sense that for all 0 ≤ s < t, Bt+s −Bt
d
= Bs

iv) For all t > 0, Bt is distributed as a gaussian with mean 0 and variance t.

It is not at all obvious that such a stochastic process exists and, in fact, it was not until Norbert Wiener
constructed it in 1923 that Brownian motion was treated in a rigorous matter. We will assume the existence
of Brownian motion for the remainder of the series, though. An immediate consequence of the definition is
that the covariance of Bs and Bt is given by s∧ t. To see this, we know that E[Bs] = E[Bt] = 0 so it suffices
to compute E[BsBt]. But we have, assuming that s ≤ t,

E [BsBt] = E [E [BsBt|Fs]] = E
[
E [(Bt −Bs)Bs|Fs] + E

[
B2
s |Fs

]]
= E

[
B2
s

]
= s

by the fact that Bs is Fs- measurable and Bt − Bs is independent of Fs and is distributed as Bt−s which
has mean 0. Two very useful properties of Brownian motion, scaling and time inversion, are contained in
the following proposition.

Proposition 53. Let Bt be a standard Brownian motion.

i) If λ > 0 then λB t
λ2

is again standard Brownian motion.

ii) Let

Xt =

{
0 t = 0

tB 1
t

t > 0

then Xt is standard Brownian motion.
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Proof. (i): Continuity, independence, and stationarity are obvious from these properties of Bt. To check
that the distribution is correct, note that λB t

λ2
is still gaussian with zero mean and has variance (λ)2 t

λ2 = t.

Thus we are done.
(ii): Independence and stationarity are obvious. A similar computation to the above gives that we have

the correct distributions so all that is required is continuity. In fact, continuity is obvious for t > 0 so we
need only check continuity at 0. By the fact that Xt has the same distribution as Bt, we have because Q>0

countable that

lim
t→0
t∈Q

Xt = 0

But Q is dense in R and Xt is continuous for t > 0 so Xt → 0 as t→ 0 and we have continuity. �

These two simple properties have surprisingly far reaching consequences. For instance, they allow us to
bound the growth of Brownian motion pretty well.

Proposition 54. Let Bt be standard Brownian motion. Then, almost surely

lim
t→∞

Bt
t

= 0

and

lim sup
Bt√
t

=∞

Proof. For the first part, let Xt be the time inversion of Bt. Then we have

lim
t→∞

Bt
t

= lim
t→∞

X 1
t

= X0 = 0

by Proposition 53.
For the second part, note that by Fatou’s lemma, we have for any c > 0,

P
(
Bn > c

√
n i.o.

)
= E

[
lim sup1{Bn>c

√
n}
]
≥ lim supE

[
1{Bn>c

√
n}
]

= lim supP
(
Bn > c

√
n
)

But by Proposition 53, P(Bn > c
√
n) = P(B1 > c) > 0. But this is an exchangeable event so by Theorem 47

(or by Proposition 60), this probability is 1. �

We note that under the interpretation of Brownain motion as a limit of a random walk both of these
growth results make sense. The first is the equivalent of Theorem 26, the Strong Law of Large Numbers,
while the second is the analogue of Theorem 22, the Central Limit Theorem. Putting these results together,
we know that |Bt| grows more quickly than

√
t and less quickly than t; in the sequel, we will develop a much

finer result in this direction. Moreover, by Proposition 54, and symmetry we have that lim inf Bt = −∞.
Because Bt is continuous, this means that Bt passes through every real number infinitely many times almost
surely, another result that should be familiar from the simple symmetric random walk.

3.2 Brownian Motion as a Stochastic Process

We consider the symmetric random walk to be the standard example of a martingale in discrete time.
Similarly, we would like to consider Brownian motion as a martingale in continuous time. Indeed, we have

Proposition 55. Let Bt be a Brownian motion. Then Bt is a martingale with respect to its natural filtration
Ft.

Proof. We compute for s < t,

E [Bt|Fs] = E [Bt −Bs +Bs|Fs] = E [Bt −Bs|Fs] + E [Bs|Fs] = 0 +Bs = Bs

�
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Example 56. For another example of a martingale, we could consider B2
t − t. Indeed we have

E[B2
t − t|Fs] = E[(Bt −Bs)2 + 2(Bt −Bs)Bs +B2

s − t|Fs] = B2
s − s

We can think of this martingale as the continuous analogue of S2
n−σ2n of the random walk in discrete time.

This will be an important martingale when we talk about stochastic integration.

Just as we have the definition of a stopping time in discrete time, so, too, do we have one in continuous
time

Definition 57. A random time τ is a stopping time for the filtration Ft if {τ ≤ t} ∈ Ft for all t > 0.

Remark 58. In continuous time we are forced to make a choice between considering sets {τ < t} and sets
{τ ≤ t} for the definition of a stopping time, a difficulty that does not appear in discrete time. The former
are called optional times, which is where the name optional stopping theorem comes from. Note that if the
filtration is not right continuous, then these notions are distinct. In order to avoid this (rather important)
technicality, we will augment our filtrations so as to be right continuous whenever we talk about stopping
times; in particular this means we are not using the natural Brownian filtration.

Similarly to Theorem 44, we have an optional stopping theorem in continuous time.

Theorem 59. Let (Mt,Ft) be a continuous martingale and S ≤ T be Ft-stopping times. and suppose that
|Mt∧T | ≤ X for some random variable X such that E[X] <∞. Then E [MT |FS ] = MS.

Rigorous proofs of this theorem can be found in [Kar91, RY99, Mö10], but the idea is simple. We have
already shown this theorem in the case of discrete time, so we take a sequence of stopping times (Tn) such
that Tn ↓ T and apply Theorem 44. We will eventually want to apply this to get a continuous version of
Wald’s equations, but before we can do this, we need some facts about the running maximum.

Brownian motion is a martingale, as has been established, but it is also a Markov process. We do not
wish to go into the details of defining such, but we call the fact that Bt+s − Bt is independent of Ft for all
0 ≤ t, s to be the Markov property. Applying this property to s = 0 gives the Bluementhal 0-1 law.

Proposition 60. If F0+ is the augmentation of the natural filtration associated to Bt then it is trivial in
the sense of Theorem 47. Similarly, if T is the tail σ-algebra, then it too is trivial.

Proof. The first statement follows from the markov property applied to s = 0. The second statement follows
from the first applied to the time inverted Brownian motion Xt = tB 1

t
. �

Remark 61. The second statement above could be treated as a special case of the Kolmogorov 0-1 law which
states that if X1, X2, . . . are independent and Fn = σ(X1, . . . , Xn) then the tail σ-algebra T =

⋂
n Fn is

trivial.

While the markov property is useful, the following generalization is even more useful.

Theorem 62 (Strong Markov Property). Let τ be a stopping time for a standard brownian motion Bt such
that P(τ <∞) = 1. Then for all t > 0, Bτ+t−Bτ is distributed as a standard brownian motion independent
of Fτ .

We will not prove this here, and instead cite [Kar91, Mö10, RY99, Dur10], although we remark that the
proof method is the same discrete approximation idea mentioned following Theorem 59.

One of the key applications of Theorem 62 is the reflection principle. Given a stopping time τ , we may
define reflected Brownian motion as

B̃t =

{
Bt t ≤ τ
2Bτ −Bt t > τ

An example is in Figure 1 The key result regarding such reflections is

Theorem 63 (Schwarz Reflection Principle). Let Bt be a standard Brownian motion, τ a stopping time,

and B̃t the reflection at τ . Then B̃t is a standard Brownian motion.

17



Figure 1: A Brownian motion reflected where the grey represents the path before reflection, the blue is the
continuation of the original, and the dotted orange is the reflection.

Proof. On {τ = ∞} this is trivial so we restrict to {τ < ∞}. In this case we note that Bτ+t − Bτ is a
standard Brownian motion by Theorem 62. By symmetry, Bτ − Bτ+t = −(Bτ+t − Bt) is also a standard
Brownian motion. We note that concatenating independent paths is measurable and so we see that gluing
(Bt+τ − Bτ ) to Bt at τ is the same in distribution as gluing (Bτ − Bτ+t). The first of these is just Bt and

the second is B̃t. Thus (B̃t)
d
= (Bt) as stochastic processes. �

Remark 64. Note that this is stronger than saying that Bt
d
= B̃t for all t. For instance, if we consider

Xt =
√
tZ where Z is a standard Gaussian then Bt

d
= Xt for all t, but their distributions are clearly different

as stochastic processes.

As an example application of this powerful principle, we can find the distribution of the maximum process
and the intimately related first passage time. In particular, for some a ∈ R, we may define τa = inf{t|Bt = a}.
Note that τa is a stopping time. Then we have

Proposition 65. Let Mt = maxs≤tBs and let τa as above. We have

P(Mt > a) = P(τa < t) = 2P(Bt > a) = P(|Bt| > a) =

√
2

π

∫ ∞
at−

1
2

e−
x2

2 dx

Remark 66. Similar to the previous remark, we have that the distributions of Mt and |Bt| are the same
for all t but they are not equal in distribution as stochastic processes, as Mt is always increasing. There is
another stochastic process, Mt − Bt, however, that does have the same distribution as a stochastic process
as |Bt|. This is illustrated in Figure 2.

Proof of Proposition 65. Notice that −Bt
d
= Bt so without loss of generality, a > 0. But if a > 0 then τa < t

if and only if Mt ≥ a, thus we have the first equality. Now let B̃t be the reflection through τa. We note that
if τa < t then B̃t < a if and only if B̃t > a. We thus have

P (τa < t) = P ({τa < t} ∩ {Bt < a}) + P ({τa < t} ∩ {Bt > a})

= P ({τa < t} ∩ {Bt > a}) + P
(
{τa < t} ∩ {B̃t > a}

)
= 2P ({τa < t} ∩ {Bt > a}) = 2P (Bt > a)
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Figure 2: The first figure shows the original Bt and |Bt|. The second figure shows Mt and Mt − Bt. Note
that Mt is increasing.

where the penultimate equality comes from Theorem 63 and the last equality comes from the fact that
{τa < t} ⊃ {Bt > a} by continuity. But by symmetry, 2P(Bt > a) = P(|Bt| > a). For the last equality, we
note that

P (|Bt| > a) = P
(∣∣∣∣Bt√t

∣∣∣∣ > a√
t

)
=

√
2

π

∫ ∞
bt−

1
2

e−
x2

2 dx

by Proposition 53. �

The above result is of independent interest, because the maximum process has many important applica-
tions. One easy one is to verify a Brownian motion analogue of Wald’s equations.

Proposition 67. Let Bt be Brownian motion and τ a stopping time such that Eτ < ∞. Then E[Bτ ] = 0
and E

[
B2
τ

]
= Eτ .

Proof. For the first part, we consider

Mk = max
0≤s≤1

|Bk+s −Bk| M =

dTe∑
k=0

Mk

Note that Mk are iid random variables by the definition of Brownian motion. Moreover, by the tail sum
formula, recall that

E[M1] =

∫ ∞
0

P(M1 > x)dx ≤ 1 +

∫ ∞
1

C
e−

x2

2

x
dx <∞

where the first inequality follows from Proposition 65 and the gaussian tail bound. Thus we have

E[M ] = E

dTe∑
k=0

Mk

 =

∞∑
k=0

E
[
1{τ>k−1}Mk

]
=

∞∑
k=0

P(T > k − 1)E[Mk] = E[M1]E[T ] <∞

Thus we have |Bt∧τ | ≤M and EM <∞ so we may apply Theorem 59 to get the result.
Now for the second statement, let Tn = inf{t : |Bt| = n}. Let Xt = B2

t − t, which we have already seen

is a martingale. Then we can stop Xt and consider Xτ∧Tn
t and we note that

∣∣∣Xτ∧Tn
t

∣∣∣ ≤ n2 + τ which is
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integrable by assumption. By Theorem 59, we have E
[
B2
τ∧Tn

]
= E[τ ∧ Tn]. Now, by Fatou’s lemma, we

have

E[B2
τ ] ≤ lim inf E

[
B2
τ∧Tn

]
= lim inf E [τ ∧ Tn] ≤ E[τ ]

Conversely, we notice that

E[B2
τ ] = E

[
B2
τ∧Tn

]
+ 2E [Bτ∧Tn(Bτ −Bτ∧Tn)] + E

[
(Bτ −Bτ∧Tn)2

]
= E

[
B2
τ∧Tn

]
+ E

[
(Bτ −Bτ∧Tn)2

]
≥ E

[
B2
τ∧Tn

]
Finally, by monotone convergence,

E
[
B2
τ

]
≥ limE

[
B2
τ∧Tn

]
= limE[τ ∧ Tn] = E[τ ]

Putting the inequalities together yields the result. �

As an example, we may consider τ = inf{t : Bt /∈ (−a, b)} for 0 < a, b. Clearly τ ∧ n is an integrable
stopping time, so we may apply Theorem 59 to get E[τ ∧ n] = E[W 2

τ∧n] ≤ min(a2, b2). By the monotone
convergence theorem and the fact that τ ∧ n ↑ τ , we get E[τ ] ≤ min(a2, b2) < ∞. Now we may apply
Proposition 67 in the same manner as we did for the simple symmetric random walk to get

P(Bτ = −a) =
b

a+ b
P(Bτ = b) =

a

a+ b
E[τ ] = ab

Just as in the symmetric random walk, we may take b → ∞ and prove that if τa = inf{t : Bt = a} then
E[τa] =∞. Of course, we could have proved this using our explicit characterization of the distribution of τa
instead.

3.3 The Law of the Iterated Logarithm

In this section we formalize a connection between the random walk and Brownian motion and illustrate its
utility with the celebrated law of the iterated logarithm. We seek to answer the question of how quickly can
a random walk grow. We know from Theorems 22 and 26 that

lim sup
Sn
n

= 0 lim sup
Sn√
n

=∞

almost surely. Similarly we know by Proposition 54 that

lim sup
Bt
t

= 0 lim sup
Bt√
t

=∞

Thus we know that the rate of growth is greater than
√
t but less than t for Brownian motion. We will use

Brownian scaling to find the rate of growth of Brownian motion. We will then embed a random walk in
Brownian motion and use this embedding to find the growth rate of a general random walk. We begin by

Theorem 68 (Law of the Iterated Logarithm). Let Bt be standard brownian motion. Then almost surely

lim sup
Bt√

2t log log t
= 1

Proof. Let ϕ(t) =
√

2t log log t. Fix ε > 0 and r > 1. Consider the events

An =

{
max
t≤rn

Bt ≥ (1 + ε)ϕ(rn)

}
Letting Mt be the running maximum and applying Proposition 65, we have

P (An) = P
(
|Brn |√
rn
≥ (1 + ε)

ϕ(rn)√
rn

)
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Applying Proposition 53 and the Gaussian tail bound from the problem set, we have

P(An) ≤ 2 exp
(
−(1 + ε)2 log log rn

)
=

2

(n log r)(1+ε)2

But this is summable, so applying Lemma 27 we have that P(An i.o.) = 0. For t� 0 we have rn−1 ≤ t < rn

and we note that ϕ(t)
t ↓ 0 so we have

Bt
ϕ(t)

=
Bt

ϕ(rn)

ϕ(rn)

rn
t

ϕ(t)
≤ (1 + ε)r

eventually by the previous computation. Thus we have almost surely that

lim sup
Bt
ϕ(t)

≤ (1 + ε)r

Sending ε to 0 and r to 1 gives that lim sup Bt
ϕ(t) ≤ 1.

For the opposite inequality, we obviously wish to use the second Borel-Cantelli, but for this we need to
make the events independent. Again we fix an r > 1. Now we consider the events

An =
{
Brn −Brn−1 ≥ ϕ(rn − rn−1)

}
We know from the lower gaussian tail bound that if Z is standard gaussian then there is a constant c such
that

P(Z > x) ≥ ce
− x22

x

(
1− 1

x2

)
Thus, for n� 0 we have

P(An) = P
(
Z ≥ ϕ(rn − rn−1)√

rn − rn−1

)
≥ C e− log log(rn−rn−1)√

log log(rn − rn−1)
>

C

n log n

We know that the An are independent so we may apply Lemma 27 to get that P(An i.o.) = 1. We now need
to translate this back into a statement for general t. To do this, we note that because lim sup Bt

ϕ(t) ≤ 1, we

have that

Brn ≥ Brn−1 + ϕ(rn − rn−1) ≥ −2ϕ(rn−1) + ϕ(rn − rn−1)

infinitely often. Dividing by ϕ(rn), and noting that

ϕ(rn−1)

ϕ(rn)
=
ϕ(rn−1)√
rn−1

√
rn

ϕ(rn)

1√
r
≤ 1√

r

and that ϕ(t)
t ↓ 0, we have

Brn

ϕ(rn)
≥ −2ϕ(rn−1) + ϕ(rn − rn−1)

ϕ(rn)
≥ − 2√

r
+
rn − rn−1

rn
= 1− 2√

r
− 1

r

infinitely often. Thus we know that

lim sup
Bt
ϕ(t)

≥ 1− 2√
r
− 1

r

Sending r →∞ we get the other inequality and we are done. �
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Figure 3: A sample Brownian Path and the envelope given by Theorem 68 in dashed lines.

This gives a very fine result for Brownian motion, in that we know how quickly it can grow. By symmetry,
we have that almost surely, for all t� 0, Bt is contained in the envelope given by ±ϕ(t), an example is seen
in Figure 3 We have not yet related this to a random walk. The trick will be “embedding” the random walk
in Brownian motion. To do this we will want to choose stopping times τ1, τ2, . . . such that Bτn has the same
distribution as Sn. Then we will hope that this will be enough to coerce our random walk into satisfying the
conclusion of Theorem 68. This requires two steps, the first being the embedding and the second showing
that the limit supremum is the same along subsequences. Because of its similarity to the previous proof, we
do the second step first.

Proposition 69. Let τ1 ≤ τ2 ≤ . . . be a sequence of random times such that τn →∞ and τn+1

τn
→ 1 almost

surely. Then almost surely,

lim sup
Bτn
ϕ(τn)

= 1

Similarly, if τn is a sequence of random times such that τn
n → a almost surely for some a > 0 then almost

surely,

lim sup
Bτn
ϕ(an)

= 1

Where ϕ(n) =
√

2n log log n.

Remark 70. The upper bound is obvious, but the restrictions for the lower bound are less obvious. Intuitively,
they ensure that the stopping times are sufficiently dense so as to be representative. For instance, if we took
τn = inf{τn−1 + 1||Bτn | ≤ 1} then τn are almost surely finite by the recurrence of Brownian motion, but the
conclusion clearly does not hold. This is because these times are relatively rare and so are not representative.
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Proof. This proof proceeds in much the same way as the proof of Theorem 68. For the first statement,
the upper bound is clear because if

Bτn
ϕ(τn) > 1 infinitely often then Bt

ϕ(t) > 1 infinitely often, contradicting

Theorem 68. For the lower bound, let r > 4 and let

Ak =
{
Brk −Brk−1 ≥ ϕ(rk − rk−1)

}
Dk =

{
min

rk≤t≤rk+1
Bt −Brk ≥ −

√
rk
}

Moreover, let A′k = Ak ∩Dk. Note that by the definition of Brownian motion, Ak and Dk are independent.
Using the Gaussian tail bound and Proposition 53, we have

P(Ak) = P
(
Brk −Brk−1√
rk − rk−1

≥ ϕ(rk − rk−1)√
rk − rk−1

)
= P

(
B1 ≥

ϕ(rk − rk−1)√
rk − rk−1

)
≥ c

k log k

Now note that P(Dk) = pr > 0 independent of k, by the markov property. By independence, we have
P(A′k) = P(Ak)pr. Thus P(A′k) is summable and they are independent so by Lemma 27 we have that
infinitely often

min
rk≤t≤rk+1

Bt ≥ Brk−1 + ϕ(rk − rk−1)−
√
rk

By Bk−1
r ≥ −2ϕ(rk−1) for k � 0 by Theorem 68, and the computation

ϕ(rk)− ϕ(rk−1) ≥ ϕ(rk)

(
1− 1

r

)
We have for infinitely many k,

min
rk≤t≤rk+1

Bt ≥ ϕ(rk − rk−1)− 2ϕ(rk−1)−
√
rk ≥ ϕ(rk)

(
1− 1

r
− 2√

r

)
−
√
rk > 0

by r > 4 Let nk = inf{n|τn > rk}. By τn+1

τn
→ 1 we have for all ε > 0 and k � 0 that rk ≤ τnk < rk(1 + ε)

so

Bτnk
ϕ(τnk)

≥ ϕ(rk)

ϕ(rk(1 + ε))

(
1− 1

r
− 2√

r

)
−
√
rk

ϕ(rk)

but we know that
√
rk

ϕ(rk)
→ 0 and that ϕ(rk)

ϕ(rk(1+ε))
→ 1√

1+ε
so

lim sup
Bτn
ϕ(τn)

≥ 1√
1 + ε

(
1− 1

r
− 2√

r

)
almost surely. Sending r →∞ and ε→ 0 yields the first result.

For the second statement, note that if τn
n → a almost surely, then ϕ(τn)

ϕ(an) → 1 almost surely and so we

have

lim sup
Bτn
ϕ(an)

= lim sup
Bτn
ϕ(τn)

ϕ(τn)

ϕ(an)
= lim sup

Bτn
ϕ(τn)

= 1

by the first statement so we are done. �

Thus we need to find stopping times such that Bτn has the same distribution as Sn and τn
n → 1. Suppose

we had a way of constructing a stopping time τ1 such that Bτ
d
= X1 and E[τ ] <∞. Then we could consider

Bτ+t − Bτ and by Theorem 62 we have that this is distributed again as Brownian motion. Thus we could
define τ2 as equal in distribution to τ1 and run this on the new Brownian motoin. In this way we can
construct τ1 ≤ τ2 ≤ . . . stopping times and we have

Bτn =

n∑
k=1

Bτk −Bτk−1

d
=

n∑
k=1

Xk = Sn
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Moreover, we note that τn
n → E[τ1] almost surely. Thus we have reduced the problem to embedding X into

Brownian motion such that E[τ ] <∞. In this case we would have by Proposition 67 that E[X] = E[Bτ ] = 0
and E[X2] = E[τ ] <∞. Thus we have necessary conditions on X in order to embed X in Brownian motion.
For convenience, we assume that E[X1] = 0 and E[X2

1 ] = 1, which by translation and scaling is no loss of
generality. The surprising fact is that the above conditions are sufficient to embed X1 into Brownian motion.
This is captured in

Theorem 71 (Skorokhod Embedding Theorem). Let X be a random variable such that E[X] = 0 and
E[X2] = 1. Then there exists a stopping time τ for Brownian motion such that Bτ is distributed as X and
E[τ ] = 1.

Our proof will follow the strategy of [Dub68] as quoted in [Mö10], but there are many other approaches.
A particularly slick proof appears in [CW76], and [Ob l04] is a survey of all known constructions and their
various merits. That said, we favor Dubins’ proof for its brevity and introduce binary splitting martingales
for this reason. We begin with an example

Example 72. Suppose that X is a random variable that takes on only two values, i.e., X ∈ {−a, b}. If we
want E[X] = 0 then we need a, b > 0 and we must have

P(X = a) =
b

a+ b
P(X = b) =

a

a+ b
E[X2] = ab

We have seen in Proposition 67 that if τ = inf{t|Bt 6∈ (−a, b)} then Bτ is distributed as X and E[τ ] = ab.
Thus if we want to embed the simple symmetric random walk in Brownian motion, we could let τ = inf{t|Bt /∈
(−1, 1)}.

While this example is easy, it is the basis for the proof of the more general case. The above example
motivates the following definition:

Definition 73. Let (Xn) be a martingale in discrete time such that E[X0] = 0. For x0, . . . , xn ∈ R, define
the event

A(x0, . . . , xn) = {X0 = x0, X1 = x1, . . . , Xn = xn}

We say that Xn is binary splitting if for all x0, . . . , xn such that P(A(x0, . . . , xn)) > 0 we have that
E[Xn+1|A(x0, . . . , xn)] is supported on at most two values.

While the definition might seem a little complicated, the intuition is quite simple in that Xn is a binary
splitting martingale if and only if at each time step, the stochasatic process acts like the X in the example
above. In fact, using the above example, we may embed a binary splitting martingale in Brownian motion.
This is because X0 is supported on two values and has zero mean so the example above provides a stopping
time τ0 such that Bτ0 is an embedding. Now, given this information, X1 is supported at two values and
so we may again apply the example to Bτ0+t − Bτ0 and get a stopping time τ1 by Theorem 62. We may
continue this process and note that Bτn is distributed as Xn and E[τn] = E[X2

n]. This is all very well, but
we still need to connect the notion of binary splitting martingales to the more general Theorem 71. This is
the content of the following lemma.

Lemma 74. Let X be a random variable such that E[X] = 0 and E[X2] < ∞. Then there exists a binary
splitting martingale (Xn,Fn) such that Xn → X almost surely and in L2.

Proof. We define (Xn,Fn) recursively. Let F0 be trivial and let X0 = E[X]. We define

Y0 =

{
1 X ≥ X0

−1 X < X0

Now, let Fn = σ(Y0, . . . , Yn−1) and let Xn = E[X|Fn−1] and finally

Yn =

{
1 X ≥ Xn

−1 X < Xn
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Now, we note that Fn = σ(Ai) where there are 2n such Ai and each Ai splits into two sets to make Fn+1;
thus it is clear that Xn is a binary splitting martingale. Thus, it suffices to show that Xn → X almost surely
and in L2. Note that

E[X2] = E[(X −Xn)2] + E[X2
n] + 2E[X(X −Xn)] ≥ E[X2

n]

Thus, Xn is bounded in L2 and so Xn → X∞ = E[X|F∞] almost surely and in L2. Thus it suffices to show
that X∞ = X almost surely. To do this, we claim that

lim
n→∞

Yn(X −Xn+1) = |X −X∞|

If X(ω) < Xn(ω) then for sufficiently large n we have Yn = −1 and if X(ω) > Xn(ω) then for sufficiently
large n we have that Yn = 1. Thus the claim holds. Recalling that Yn ∈ Fn, we have

E[Yn(X −Xn+1)] = E[E[Yn(X −Xn+1)|Fn]] = E[YnE[X −Xn+1|Fn]] = 0

by the fact that Xn+1 := E[X|Fn]. But we have integrability of X and so by the dominated convergence
theorem, we have

E[|X −X∞|] = 0

and so X = X∞. Thus we are done. �

With Lemma 74 in hand, we are ready to prove the embedding theorem.

Proof of Theorem 71. Let X be a random variable with mean zero and E[X2] <∞. By Lemma 74 there is
a sequence of binary splitting martingales Xn → X almost surely and in L2. But if Xn is supported on 2
points then we have already seen how to construct a stopping time that satisfies the theorem in Example 72.
Thus we can find a sequence of stopping times τ1 ≤ τ1 ≤ . . . such that τn is an embedding of Xn in Brownian
motion. Because they are increasing τn ↑ τ a stopping time, we have

E[τ ] = limE[τn] = limE[X2
n] = E[X2] <∞

by the fact that Xn → X in L2 and thus τ <∞ almost surely. But then we also have

Bτ = lim
n→∞

Bτn
d
= lim
n→∞

Xn = X

and thus we have an embedding. �

Armed with all of the machinery that we have just built up, we are finally ready to prove the major
result of the section.

Theorem 75 (Law of the Iterated Logarithm, II). Let X1, . . . be iid random variables of zero mean and
E[X2

i ] = 1. Let Sn = X1 + · · ·+Xn be the random walk generated by the Xi. Then, almost surely,

lim sup
Sn√

2n log log n
= 1

Proof. By Theorem 71, we may take stopping times τ1 ≤ τ2 ≤ . . . such that Bτn is distributed as Sn and
E[τn] = E[S2

n] = n. Note that (τk − τk−1) are iid and E[τk − τk−1] = E[X2
i ] = 1. Thus by Theorem 26,

lim
n→∞

τn
n

= lim
n→∞

∑
τk − τk−1

n
= 1

almost surely. By Proposition 69 we are done. �
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The above is a beautiful application of some of the power of Brownian motion. The method is important:
we first took advantage of the fractal nature of Brownian motion to prove a longtime property and then
leveraged this result to show a result in the discrete case. The bridge was, of course, Theorem 71. The
reverse, too, can be accomplished with a companion theorem. Let Sn be the random walk in Theorem 75.
Then we may make a continuous version by defining

St = Sbtc + (t− btc)Xbtc+1

We may scale the above to define a sequence of functions on [0, 1] so that

S
(n)
t =

Snt√
n

Then we have

Theorem 76 (Donsker Invariance Principle). Under the metric induced by the sup-norm, S
(n)
t converges in

distribution to the standard Brownian motion on [0, 1].

This gives rigorous backing to the earlier statement that Brownian motion should be viewed as a random
walk in continuous time; in a sense it can be viewed as the limit of random walks, as prescribed by the above
theorem. We could then do some combinatorial analysis in discrete time and apply the result to Brownian
motion.

Example 77. An example from [vdV12] involves the theory of empirical processes. Suppose that X1, . . .
are iid random variables from a distribution F . If nothing is known about F , a natural estimate for this
function is the empirical distribution function given by

Fn(t) =
1

n

n∑
i=1

1{Xi≤t}

A theorem of Glivenko and Cantelli says that

||Fn − F ||∞ → 0

as n→∞ (for proof, see [Dur10, vdV12]). One might wonder if we can have finer information on the rate of
convergence. Indeed we note that nFn(t) can be seen to be a random walk and using Theorem 75 and some
more sophisticated machinery, it can be seen that

lim sup

√
2n

log log n
||Fn − F ||∞ ≤ 1

almost surely.

Many more beautiful examples of the application of Theorems 71 and 76 can be found in [Mö10, Kar91,
RY99, vdV12].

4 Stochastic Calculus

4.1 Can We Use Normal Calculus?

We have seen some of the basics of stochastic processes in continuous time, but it is now time to introduce the
tool that really separates the continuous case from the discrete time case. Stochastic calculus allows one to
do many computations and to analyze in depth some of the properties of the Brownian sample paths; [Mö10]
contains many applications. More generally, stochastic calculus allows for the introduction of randomness
into models given by deterministic differential equations. Applications of this are everywhere from finance
to engineering; more about these can be found in [Kar91, Oks19, Law06].

Normal calculus begins with defining a derivative. For stochastic calculus, this will not work. Brownian
motion has quite rough sample paths and they almost surely not differentiable anywhere (see [Mö10, Kar91]
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for proof); as Brownian motion is the most important example of a stochastic process in continuous time,
we will need to look somewhere else. Thus, we define instead a stochastic integral. This is not quite as easy
as it first appears either however. A näıve suggestion might be to integrate pathwise. That is to say, could
we define for some continuous martingale M ,(∫ t

0

XsdMs

)
(ω) =

∫ t

0

Xs(ω)dMs(ω)

where the integral on the right hand side is just a standard Stieltjes integral? The answer is no. To see
this, recall that a Stieltjes integral is defined as the limit of the integral of simple approximations on some
partition of the interval [0, t]. The proof that this integral is well defined in that the points where one takes
the approximate value of the integrand are irrelevant to the final result requires that we have bounded first
variation in Ms. Unfortunately, we have

Proposition 78. A continuous square integral martingale with bounded first variation is constant.

Proof. Without loss of generality, we may assume that M0 = 0. Letting V (Bt) be the first variation, we have
τn = inf{t|V (Bt) > n} and considering the stopped martingale Mτn , we may assume that |Mt|, V (Mt) ≤ n
for some n. We have

E[M2
t ] = E

[∑
M2
ti+1
−M2

ti

]
= E

[∑
E
[
M2
ti+1
−M2

ti |Fti
]]

= E
[∑

E
[
(Mti+1 −Mti)

2|Fti
]]

= E
[∑

(Mti+1 −Mti)
2
]

By our assumption, then we have

E[M2
t ] ≤ E

[
V
(
sup

∣∣Mti −Mti−1

∣∣)] ≤ E
[
sup

∣∣Mti −Mti−1

∣∣]→ 0

Thus Mt = 0 almost surely. This holds for all t and so we are done. �

Thus we see that we cannot define pathwise integrals and need to come up with an entirely new theory
of integration for continuous martingales, a theory that is somehow more global and probability theoretic.
We do this in the next section.

4.2 The Ito Integral

We saw in the last section that normal calculus is insufficient for our purposes. The question remains as
to how we might construct a new integration theory. This question occupied the minds of many famous
probabilists in the mid-20th century and there have been several formulations proposed. We stick with
the formulation of Ito. In [PWZ33], Paley, Wiener, and Zygmund introduce the concept of integrating
nonrandom functions with respect to Brownian motion and Ito introduced randomness into the integral that
bears his name in [Itô44]. Look to [Kar91, Pro04] for historical accounts of this development. The intuition
is simple and identical to that of the Riemann-Stieltjes integral: define an integral for simple functions
and approximate. The issues here were first that it was unclear exactly which functions should be termed
simple and second that it was unclear as to which functions could be approximated. We adopt a relatively
nonrigorous treatment of the subject due to time constraints; look to [Kar91, RY99, Pro04, Law06] for more
in depth analyses.

Suppose we had some discrete time process Hn where there are times t1, t2, . . . such that H jumps at tn,
i.e. if tn ≤ t < tn+1 then Ht = Hn. Then it is obvious how we define the integral: we use Proposition 40 to
get ∫ t

0

HtdBt =
∑
k

Htk(Btk −Btk−1
)

In particular, we would like Ht to be predictable because in this case we have that the integral is a martingale.
This leads to the following definition:
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Definition 79. We say that a random function is simple if there are 0 = t0 < t1 < . . . such that

f(t, ω) =
∑

fj(ω)1[tj ,tj+1)(t)

The above discussion immediately yields a definition for the integral of a simple function. The question is
how well does this definition behave after taking the limits that we will need to take to make this nontrivial?
The answer is not well without further restrictions as the following example from [Oks19] demonstrates:

Example 80. A natural way to approximate a continuous function gω(t) in the above way is to choose
fj(ω) = gω(t∗j ) where t∗j ∈ [tj , tj+1]. When we are integrating in the Stieltjes sense, we are restricted to
integrating against functions of bounded first variation, where the choice of the endpoint does not matter.
We will see that that is not the case here. We consider two sequences of simple functions

f1(t, ω) =
∑
k>0

Bk2−n(ω)1[k2−n,(k+1)2−n)(t)

f2(t, ω) =
∑
k>0

B(k+1)2−n(ω)1[k2−n,(k+1)2−n)(t)

The first function approximates Brownian motion from the left endpoint and the second approximates
Brownian motion from the right endpoint. Thus as n → ∞ we see that both functions approach Brownian
motion. Ideally, that should mean that their integrals should be the same. Now, if we take the expected
value, we see

E
[∫ t

0

f1dBs

]
=
∑

E
[
Bk2−n(B(k+1)2−n −Bk2−n)

]
= 0

by the markov property. Note that this is expected because, as Bt is continuous, it must be predictable and
so by Proposition 40 we have that the integral is a martingale. But we have

E
[∫ t

0

f2dBs

]
=
∑

E
[
B(k+2)2−n

(
B(k+1)2−n −Bk2−n

)]
= t

Thus we see that these “integrals” certainly do not agree!

Thus if we wish to approximate a function we must choose a convention for which point in the interval
[tj , tj+1) we wish to evaluate our function. We follow Ito and choose the leftmost point. The reason for
this is because we would like the integral of a martingale to remain a martingale (at least in nice cases, in
less nice cases we end up with a local martingale). Now we need to consider a class of functions that are
integrable.

Definition 81. We say that f ∈ I is integrable if (t, ω)→ f(t, ω) is B×F measurable, where B is the Borel
σ-algrebra on R+ and F is the filtration on which our Brownian motion exists and f(t, ω) is Ft adapted and
finally for all t > 0

E
[∫ t

0

f2ds

]
<∞

Note that clearly bounded simple functions are integrable. While the first two conditions make perfect
sense, the last might be surprising. The motivation for this lies in the fact that Brownian motion has finite
quadratic variation instead of finite first variation and thus we should naturally look to limits in L2 as
opposed to L1. This intuition is on display in the following lemma:

Lemma 82 (Ito Isometry). Let f be bounded and simple. Then for all t > 0,

E
[∫ t

0

f2dt

]
= E

[(∫ t

0

fdBt

)2
]
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Proof. Note that from the definition of Brownian motion and the markov property

E
[
fi−1

(
Bti −Bti−1

)
fj−1

(
Btj −Btj−1

)]
=

{
0 i 6= j

E[f2
i−1](ti − ti−1)2 i = j

follow from the definition of Brownian motion. The result follows from the construction stochastic integral
for simple processes. �

We call Lemma 82 the Ito isometry because the equality (more precisely its general form when f is any
integrable process) implies the Ito integral on [0, t] is an isometry from the L2 space associated to adapted
square-integrable processes and square-integrable random variables. In this form, the proof of the equality
follows trivially from the fact that The key is now to find an approximation of an integrable process by
simple ones. The proof of the following proposition can be found, with varying degrees of generality, in
[Oks19, Kar91, Pro04, RY99].

Proposition 83. Let Xt ∈ I be an integrable process. Then there exists a sequence of bounded, simple

processes X
(n)
t such that

sup
t>0

lim
n→∞

E
[∫ t

0

(
Xt −X(n)

t

)2

dt

]
= 0

Thus we may define

Definition 84. Let Xt ∈ I be an integrable process. Letting X
(n)
t be the process in Proposition 83, we

define the stochastic integral ∫ t

0

XsdBs := lim
n→∞

∫ t

0

X(n)
s dBs

To see that this limit exists, we note that by Lemma 82, we have that
{∫ t

0
X

(n)
s dBs

}
is a cauchy sequence

in L2, which is complete and thus the limit exists. The fact that this limit does not depend on the choice of
approximating X(n) follows from Lemma 82 as well. Thus we have constructed the Ito integral.

Example 85. As an example of calculating a stochastic integral, we will show that∫ t

0

2BsdBs = B2
t − t

As our simple function approximations, we let

fn(s, ω) =
∑
k

B kt
n
1[ ktn ,

(k+1)t
n )(s)

Let Bk = B kt
n

and let ∆k = Bk+1 −Bk. Then we have

E
[∫ t

0

(fn −Bs)2ds

]
= E

[∑
k

∫ (k+1)t
n

kt
n

(Bs −Bk)2ds

]
=
∑
k

∫ (k+1)t
n

kt
n

(
s− kt

n

)
ds

=
1

2

∑
k

(
(k + 1)t

n
− kt

n

)2

=
1

2

∑
k

1

n2t
=

1

2nt
→ 0

Thus fn → Bt in the appropriate sense. Now we note that

B2
k+1 −B2

k = ∆2
k + 2Bk∆k

and so we have

B2
t =

∑
k

B2
k+1 −B2

k =
∑
k

∆2
k + 2Bk∆k
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and thus, rearranging, we see that ∑
k

2Bk∆k = B2
t −

∑
k

∆2
k

Taking limits, we see that the left hand side converges to the Ito integral and the right hand side convergest
to B2

t − t.

We see that it is not necessarily easy to compute an Ito integral directly from the definition. Fortunately
we have another way of doing this that we shall explore later on.

4.3 The Ito Formula and First Applications

Note that our construction of the Ito integral immediately yields some basic properties. We first note that
we can define ∫ t1

t0

XsdBs :=

∫ t1

0

XsdBs −
∫ t0

0

XsdBs

Moreover, the integral is clearly linear and is mean zero. The fact that the integral (or a continuous
modification at least) is a continuous square integrable martingale is not completely obvious, but the reader
will be referred to the usual suspects ([Kar91, Pro04, RY99]) for proof in the interest of time.

We now extend our focus slightly to integrals that take time evolution into account as well.

Definition 86. We say that Xt is an Ito process if there are integrable and possibly random b, σ such that

Xt = X0 +

∫ t

0

b(s, ω)ds+

∫ t

0

σ(s, ω)dBs

We will often have cause to denote this as

dXt = b(t)dt+ σ(t)dBt X0 = Y

where the dependence on ω of the random functions b, σ is implicit.

While we have defined a stochasatic integral, it is still far from clear how we might actually compute
anything with it. To do this we will need the stochastic equivalent of the chain rule. We need the following
definiton:

Definition 87. Let Xt be an Ito process. We define its quadratic variation as

〈X〉t = V (2)(Xt) = lim
n→∞

n∑
k=1

∣∣∣X (k+1)
n t
−X k

n t

∣∣∣2
Remark 88. While it was a major hole to omit discussion of the Doob decomposition theorem, this is
the motivation for why the quadratic variation is important. In particular, if M is a continuous square
integrable martingale, then 〈M〉t is the unique increasing, predictable process such that M2

t − 〈M〉t is a
martingale. In the discrete case, there is a good discussion in [Chu00, Dur10]. For the continuous case, see
[RY99, Kar91, Pro04].

Example 89. We have seen in the problem set that 〈B〉t = t. If we suppose that Yn =
∫
XsdBs and X is

simple then we have

〈Y 〉t =
∑
i

X2
tj

(
Btj+1

−Btj
)2

Taking limits we arrive at
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Proposition 90. Let b ∈ C1 and sufficiently nice1 almost surely and let

Yt = Y0 +

∫ t

0

b(s)ds+

∫ t

0

XsdBs

Then

〈Y 〉t =

∫ t

0

X2
sds

Proof. Translation does not affect quadratic variation so without loss of generality Y0 = 0. The process∫ t
0
b(s)ds has finite first variation so adding it does not affect quadratic variation and thus only the last term

contributes. We note, however, that if X is simple, we have

E
[(∫ t

s

X2
sdBs

)
|Fs
]

= E
[(
X0(Bt1 −Bs) +

∑
Xi(Bti+1 −Bti) +Xn(Bt −Btn

) ∣∣∣∣Fs]
= E

[
X2

1 (Bt1 −Bs)2 +
∑

X2
i (Bti+1

−Bti)2 +X2
n(Bt −Btn)2

∣∣∣∣Fs]
= E

[
X2

1 (t1 − s) +
∑

X2
i (ti+1 − ti) +X2

n(t− tn)

∣∣∣∣Fs]
= E

[∫ t

s

X2
udt

∣∣∣∣Fs]
Thus by the time additivity and Lemma 82, we have equality in L2 which suffices. Everything above passes
through limits in L2 so we are done. �

We are now ready to set up the product rule of stochastic calculus:

Lemma 91 (Product Rule). Let Xt, Yt be Ito processes

Xt = X0 +

∫ t

0

bsds+

∫ t

0

σsdBs

Yt = Y0 +

∫ t

0

b′sds+

∫ t

0

σ′sdBs

Then

XtYt = X0Y0 +

∫ t

0

XsdYs +

∫ t

0

YsdXs +

∫ t

0

σsσ
′
sds

Remark 92. Note that this is the normal product rule with an extra term. Where does the extra integral
with respect to s come in? The answer is the quadratic variation! In the proof below we will see a sum that
includes terms with a (∆Bt)

2 in them. In normal calculus this would be a (∆t)2 and disappears when we
take limits. In this case, because Bt has finite quadratic variation, one can think of (∆Bt)

2 ≈ ∆t in the
limit sense and the extra term appears as we take the limit.

Proof. Note that Because (X+Y )2−X2−Y 2 = 2XY and integrals are linear, it suffices to prove the result
for X = Y . Now we note that∑(

Xtj+1
−Xtj

)2
= X2

t −X2
0 + 2

∑
Xtj (Xtj+1

−Xtj )

Taking limits we see that

X2
t = X2

0 + 2

∫ t

0

XsdXs + 〈X〉t

We are done by Proposition 90. �

1See [Kar91, Pro04, RY99] for details of what we mean by “nice.”
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In fact, the product rule in some sense captures all of the difference between normal calculus and stochastic
calculus. Thus we see a simplified version of Ito’s rule as follows:

Proposition 93. Let Xt be an Ito process and let f ∈ C2. Then

f(Xt) = f(X0) +
1

2

∫ t

0

f ′′(Xs)ds+

∫ t

0

f ′(Xs)dXs

This will often be written as

df(Xt) =
1

2
f ′′(Xt)dt+ f ′(Xt)dXt

Proof. Because we can stop X at any time T > 0, it suffices to prove the above for times lying in a compact set
in R. By the well known fact that continuous functions on compact sets of R can be uniformly approximated
by polynomials (Problem 12), we have that it suffices to show the result on polynomials. By linearity it
suffices to show the result for monomials. But an easy computation with Lemma 91 gives that it holds for
all functions f(x) = xk for k ∈ N. Thus we are done. �

A more general version of the statement of Ito’s rule is the following:

Theorem 94 (Ito’s Rule). Let Xt be a (d-dimensional) Ito process and let f(t, x) be a function that is C1

in t and C2 in each coordinate of x. Then

f(t,Xt) = f(0, X0) +

d∑
i=1

∫ t

0

∂f

∂xi
(s,Xs)dXi +

∫ s

0

∂f

∂t
(s,Xs)ds+

1

2

∫ t

0

∑ ∂2f

∂X2
i

d〈Xi〉

In differential form this becomes

df(Xt) =
∂f

∂t
dt+

∑ ∂f

∂Xi
dXi +

1

2

∑ ∂2f

∂x2
i

dt

A proof of the more general result can be found in any of the standard references, although [RY99] is
nice because it follows the method developed above. Another proof uses Taylor’s formula and can be found
in [Kar91, Law06]. We are now ready for some examples.

Example 95. Suppose we wanted to know what
∫ t

0
BsdBs was. To evaluate this, we need to introduce a

function such that f ′(x) = x. From calculus then we find

d(B2
t ) = dt+ 2BtdBt

or ∫ t

0

BsdBs =
1

2
(B2

t − t)

Note that this provides another proof that B2
t − t is a martingale.

Example 96. Note that if Bt is d-dimensional standard Brownian motion then dBt = dBt and so by
Theorem 94, we have

df(Bt) =
∑ ∂f

∂xi
dB

(i)
t +

1

2
∆fdt = (∇f) · dBt +

1

2
∆fdt

Thus we note that if f is harmonic then f(Bt) is a martingale. Similar facts hold if f is super- or subharmonic.
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Figure 4: Sample paths for f(Bt) where f is a function and Bt is a standard Brownian motion. The
martingale is “corrected” function and the submartingale (the dashed line) is the “uncorrected” function.

On the left f(x) = x2 corrected by subtracting t and on the right f(x) = ex, corrected by a factor of e−
1
2 t.

Example 97. In normal calculus we define the exponential function as the unique function whose derivative
is itself. What if we try to do this for Brownian motion? We will define E(Bt) = Xt as a process that satisfies
dXt = XtdBt. We have not explored any questions relating to stochastic differential equations, so it is far
from clear that this equation actually admits a solution. If we were trying to guess a solution, though, we
might guess that Xt = f(t, Bt) for some function f . If we further assume that f is C1 in t and C2 in Bt,
then by Theorem 94, we have

XtdBt = f(t, Bt)dBt = dXt = df(t, Bt) =
∂f

∂x
(t, Bt)dBt +

(
∂f

∂t
(t, Bt) +

1

2

∂2f

∂x2
(t, Bt)

)
dt

Thus we have by equating terms

∂f

∂x
= f

∂f

∂t
+

1

2

∂2f

∂x2
= 0

The first equation implies that there is some function g(t) such that f(t, x) = ex+g(t). Plugging this into the
second equation, we see that 1

2 + g′(t) = 0. Thus we get

E(Bt) = eBt−
1
2 t

Checking now, we see that E is indeed C1 in t and C2 in Bt and thus we may apply Theorem 94 and conclude
that Xt satisfies the above differential equation. We could generalize this process to some continuous square
integrable martingale Mt and define

E(Mt) = exp

(
Mt −

1

2
〈M〉t

)
the stochastic exponential. This exponential function is incredibly important in the study of stochastic
differential equations.

Example 98. A generalization of the previous example is geometric Brownian motion. If we have constants
a, b then we want to consider a process Xt such that

dXt

Xt
= adt+ bdBt
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Once again, it is not obvious at all from the theory developed thus far that there exists such a process.
Integrating, we see that ∫ t

0

dXs

Xs
= at+ bBt

But we see also that

d(logXt) =
dXt

Xt
− 1

2X2
t

d〈X〉t =
dXt

Xt
− 1

2X2
t

(b2X2
t dt) =

dXt

Xt
− b2

2
dt

by Proposition 90. But then plugging in we have∫ t

0

dXs

Xs
= log

(
Xt

X0

)
+
b2

2t
= at+ bBt

and thus

Xt = X0 exp

((
a− 1

2
b2
)
t+ bBt

)
Note that if a = 0 and b = 1 then we have recovered E(Bt). Our intuition might suggest that E[Xt] =

E[X0]eat. To see that this is indeed the case, let Yt = ebBt so that Xt = Yte
at− 1

2 b
2t. By Theorem 94, we have

Yt = 1 + b

∫ t

0

YsdBs +
1

2
b2
∫ t

0

Ysds

Taking expectations, applying Theorem 6, and recalling that the stochastic integral is a martingale, we have

E[Yt] = 1 +
1

2
b2
∫ t

0

E[Ys]ds

Solving this differential (integral?) equation, we get that

E[Yt] = e
1
2 b

2t

Thus we have

E[Xt] = E[Yte
at− 1

2 b
2t] = eat

which is as expected.

The stochastic exponenetial is important in many contexts, not least the martingale representation the-
orem. We have noted that the stochastic integral with respect to Brownian motion is a continuous square-
integrable martingale, but in fact the converse is true as well. For a rigorous proof see [Kar91, Oks19, Pro04,
RY99]. The general idea is that for fixed t > 0, the linear span of random variables of the form

exp

(∫ t

0

fdBs −
1

2

∫ t

0

f2ds

)
with f non-random is dense in the L2 space associated to the probability measure associated to Brownian
motion on [0, t] and thus the stochastic exponential provides a way of representing Mt as an integral with
respect to Bt. This is not the only way of representing martingales in terms of Brownian motion; random
time change is another important way.

Much like Theorem 71, we wish to “embed” a continuous martingale in Brownian motion using stopping
times. In this case, however, we need some random continuous “clock” that changes the distribution of the
Brownian motion. Before we can do this, however, we need an important theorem of P. Lèvy.

Theorem 99 (Lèvy Characterization of Brownian Motion). Let Mt be a continuous martingale (with respect
to some filtration Ft) such that 〈M〉t = t and M0 = 0. Then Mt is Brownian motion.
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Proof. Applying the argument in Example 98, we note that

E
[
eiλMt

]
= e−

λ2t
2

because 〈M〉t = t. Thus we note that

E
[
eiλ(Mt−Ms)|Fs

]
= e−

la2

2 (t−s)

and so by Proposition 24, we have that Mt −Ms is distributed as N(0, t − s) independent of Fs. Thus
we have stationarity, independence, and Gaussianity. By assumption, Mt is continuous so Mt is Brownian
motion. �

We are now able to prove our representation theorem.

Theorem 100 (Martingale Representation Theorem). Let Bt be a standard linear Brownian motion and let
Mt be a continuous, square integrable martingale such that M0 = 0. Then there exists a (possibly random)
function α(t) such that Mt and Bα(t) are identically distributed as stochastic processes.

Remark 101. Note that once again, just as we remarked after Theorem 63 and Proposition 65, this is a

stronger statement than saying that for all t, Mt
d
= Bα(t).

Proof. For t ≥ 0, let

τt = inf{s|〈M〉s = t}

Because quadratic variation is increasing and continuous, the function t 7→ τt is increasing and by Theorem 99,
we have that Mτt is standard Brownian motion. Let α(t) = 〈M〉t. Then we have

Bα(t) = B〈M〉t = Mτ〈M〉t
= Mt

as desired. �

The above fact is fundamental to the study of mathematical finance. It also provides evidence for the
intuition that Brownian motion is the “fundamental continuous stochastic process” as, in the sense described
above, other (square-integrable) continuous martingales are just Brownian motions on different clocks. For
more information on time change see [Oks19, Kar91]. For a more general treatment of stochastic integration,
see [Kar91, Pro04, RY99].

5 Brownian Motion and Partial Differential Equations

There are many connections between the study of Brownian motion and PDEs. These connections are
explained beautifully and in great depth in [Kar91] and our treatment of the subject is taken almost entirely
from that source. In the interest of time, we seek to accomplish only two goals: first to illustrate how the
study of Brownian motion can help solve a problem from the study of PDEs and second to demonstrate how
the study of PDEs can do the same for Brownian motion.

5.1 The Dirichlet Problem

For the remainder of the section we let Bt be a standard Brownian motion in d dimensions. If A ⊂ Rd is
some (open and bounded) domain then we fix

τA = inf{t ≥ 0|Bt /∈ A}

We have seen that this is a stopping time. Moreover, because A is bounded, we know that P(τA <∞) = 1.
We fix the notation Px(·) as the probability measure of Bt started such that B0 = x and Ex[·] as the
expectation with respect to this probability measure. Finally, we define a probability measure on ∂A for
x0 ∈ A, which is given by

µA,x0
(dx) = Px0

(BτA ∈ dx)
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Figure 5: A planar Brownian motion started at the origin and stopped when it hits the unit circle.

Example 102. We let Dr = Dr(0) be the disk of radius r around the origin. In this case, we note that
µDr(x0),x0

is just the uniform measure on the sphere. To see this, we just note that Brownian motion is
invariant under the action of the orthogonal group. An example is seen in Figure 5.

This section is focused on solutions to the classical Dirichlet problem. Namely, given a domain A and a
function f on ∂A, we want to find a continuous function u such that{

∆u = 0 in A

u = f on ∂A

More specifically, we want u ∈ C(A) ∩ C2(A) that is harmonic in the interior and continuous up to the
boundary with prescribed boundary values given by f . At first sight, this has nothing to do with Brownian
motion. The first connection comes from Example 96: namely, a harmonic function of Brownian motion is
a martingale. This leads to the following result:

Proposition 103. A function u is harmonic, i.e., ∆u = 0, in A if and only if it satisfies the mean value
property for all x ∈ A, namely that for all x ∈ A and for all r > 0 such that Dr(x) ⊂ A, we have

u(x) =
1

|∂Dr|

∫
∂Dr(x)

u(y)dy

Proof. We prove the if direction. The “only if” direction is purely analytic and thus less relevant to the
current discussion. We refer to [Kar91, Gil01] for those interested.

Let u be harmonic. By Theorem 94, we have for all t > 0 that

u
(
Bt∧τDr

)
= u(B0) +

d∑
i=1

∫ t∧τDr

0

∂f

∂xi
(Bs)dBs +

∫ t∧τDr

0

∆u(Bs)ds = u(B0) +Mt

where Mt is a continuous martingale by the fact that it is the stochastic integral of a (bounded) continuous
martingale and the fact that ∆u = 0. Taking expectations and applying bounded convergence, we have

u(x) = u(B0) = Ex[u(B0)] = Ex
[
u
(
Bt∧τDr

)]
→ Ex

[
u
(
BτDr

)]
= EµDr(x),x [u (y)] =

1

|∂Dr|

∫
∂Dr(x)

u(y)dy
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and thus we have the mean value property. �

This proposition immediately yields the maximum principle:

Corollary 104. Let u be harmonic on A, a bounded domain. Then

sup
A

u = sup
∂A

u

the maximum of a harmonic function is attained on the boundary.

Notice in this proof that we relied on the function Ex [u (BτA)]. Now note that BτA ∈ ∂A and so if u is
a solution to the Dirichlet problem then we would have u (BτA) = f (BτA) and so the above function would
become u(x) = Ex [f (BτA)]. We might hope that, given the argument in Proposition 103, we have that u is
a harmonic function. In fact, modulo integrability concerns, this is exactly what we have.

Proposition 105. Let A be a domain and let f : ∂A → R be continuous. Suppose that for all x ∈ A that
we have u(x) = Ex [f (BτA)] <∞ and well-defined. Then u is harmonic in A and u|∂A = f .

Proof. Note that if x ∈ ∂A then τA = 0 and so

u(x) = Ex [f (BτA)] = Ex [f(B0)] = f(x)

and so the second statement is clear. To prove the first statement, we note that

u(x) = Ex [f (BτA)] = Ex
[
Ex
[
f (BτA) |FτDr(x)

]]
= Ex

[
u
(
BτDr

)]
=

1

|∂Dr|

∫
∂Dr(x)

u(y)dy

which is the mean value property. By Proposition 103 we are done. �

Thus we have one harmonic function on A that agrees with f on the boundary. One might wonder if
there are others, however. In the case of bounded f , there are not.

Proposition 106. Suppose A is a domain such that for all x ∈ A, Px(τA < ∞) = 1 and f : ∂A → R is
continuous and bounded. Then if u solves the Dirichlet problem for (A, f) then u(x) = Ex [f (BτA)].

Proof. Let u be a solution to the Dirichlet problem and let

An =

{
x ∈ A

∣∣∣∣ inf
y∈∂A

|x− y| > 1

n

}
By Theorem 94 and the fact that ∆u = 0, we have

u
(
Bt∧τDn(x)∧τAn

)
= u(B0) +

d∑
i=1

∫ t∧τDn(x)∧τAn

0

∂u

∂xi
(Bs)dB

(i)
s = u(B0) +Xs

Note that ∂u
∂xi

is bounded in Bn ∩An so Xs is a martingale and since the integral at t = 0 vanishes, after
we take expectations we get

Ex
[
u
(
Bt∧τDn(x)∧τAn

)]
= Ex[u(B0)] = u(x)

Now we may take t, n→∞ but we see that f is bounded and so by Corollary 104 we have that u is bounded
as well, so we may apply bounded convergence and so the result holds. �

It seems like we should be done now. With some not very strong conditions on f , conditions moreover
that are obviously satisfied if A is bounded and so ∂A is compact, we have at most one harmonic function u
that agrees with f on the boundary. We do not have, however, that u is continuous necessarily. One might
argue that u is certainly continuous on A, after all it is harmonic and it can be shown without too much
effort that Proposition 103 implies that u is continuous. The problem, however is that it is not at all clear
that for all x0 ∈ ∂A we have

lim
x→x0
x∈A

u(x) = u(x0)

In fact, this is not always true. To see this, consider the following example:
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Example 107. Let d ≥ 2 and consider A = D1(0)\{0} and let f be a continuous function on ∂A. Note that
∂A = ∂D1 ∪ {0}. If there does not exist a solution to the Dirichlet problem for f |∂D1 and D1 then we are
done (there is a solution, as we shall see below). If there does exist a solution call it ũ. By Proposition 106
this solution is unique. In particular if f(0) 6= ũ(0) then there certainly can not be a solution to the Dirichlet
problem given by (A, f)!

The question is, what went wrong? Intuitively, it seems like the u defined in Proposition 105 should be
continous as when we change where we start by a little bit, it should not greatly affect where we end up on
average. This intuition is close to being true, but misses an important point. We saw in the problem sets
that given a Brownian motion in d ≥ 2 dimensions started at x and a point y ∈ Rd then the probability that
Bt = y for some t is zero. However, clearly, the probability that Bt = x for some t is 1 as B0 = x. Thus if
we have an isolated point on the boundary, then we can never expect to be able to guarantee the continuity
of u. This intuition motivates the following definition.

Definition 108. Let A be a domain and define σA = inf{t > 0|Bt /∈ A}. Note that this is in contrast to τA
where the infimum is taken over t ≥ 0. We say that a point x ∈ ∂A is regular if Px(σA = 0) = 1. Otherwise
a point is irregular.

Remark 109. Note that the event {σA = 0} ∈ F+
0 and so by Proposition 60 we have that if x is irregular

then Px(σA = 0) < 1 and so it is zero.

Note that a point x ∈ ∂A is regular if and only if a Brownian motion started at x does not immediately
enter A and stay there for some nonzero amount of time. Thus an isolated boundary point is certainly not
regular.

Example 110. In dimension d = 1 we see that all points are regular. By translation it suffices to suppose
that 0 ∈ ∂A and show that 0 is regular. Let T = inf{t > 0|Bt > 0}. Note that for all ε > 0 we have that
P(T < ε) ≥ 1

2 because P(Bε > 0) = 1
2 . Thus P(T = 0) ≥ 1

2 ; but we also have {T = 0} ∈ F+
0 and so by

Proposition 60 T = 0 almost surely. By symmetry, the result holds if T is replaced by the first time that Bt
is negative. But then we have, because 0 ∈ ∂A that P0(σA = 0) = 1.

The above example suggests that the linear case is somewhat boring; of course, we could have guessed
this because the linear case can be solved directly by integrating and shown that the only solutions are affine
functions, which is hardly the most interesting result. In higher dimensions, however, there is something
interesting.

Theorem 111. Let d ≥ 2 and consider a Dirichlet problem (A, f). Then the following are equivalent:

i) For x0 ∈ ∂A and for all bounded, measurable f : ∂A→ R, we have

lim
x→x0
x∈A

Ex [f (BτA)] = f(x0)

ii) x0 ∈ ∂A is regular for A

iii) For all ε > 0, we have

lim
x→x0
x∈A

Px [τA > ε] = 0

Proof. By translation we may assume that x0 = 0. We begin by proving that (i) implies (ii). Suppose that
0 is irregular; we will show that (i) cannot hold. By irregularity and Proposition 60, we have P(σA = 0) = 0
and thus

lim
r→0

P0 (BσA ∈ Dr) = P0 (BσA = 0) = 0

because (in dimension d) Brownian motion misses points. Thus let us fix an r > 0 such that P0 (BσA ∈ Dr) <
1
4 and a sequence δn such that 0 < δn < r and δn ↓ 0 and τn = inf{t||Bt| > δn}. We will show that for
sufficiently large n, there exists an xn ∈ A ∩ Dδ+n such that Pxn (BτA ∈ Dr) ≤ 1

2 . To see this note that
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τn ↓ 0 almost surely and so P0(τn < σA) → 1 almost surely. On {τn < σA} we have Bτn ∈ A and so for
n� 0, we have P0(τn < σA) > 1

2 . But then we have

1

4
> P0 (BσA ∈ Dr) ≥ P0 ({BσA ∈ Dr} ∩ {τn < σA}) = E0

[
1{τn<σA}P0

(
BσA ∈ Dr

∣∣Fτn)]
=

∫
A∩Bδn

Px (BσA ∈ Dr)P0 ({τn < σA} ∩ {Bτn ∈ dx}) ≥
1

2
inf

A∩Dδn
Px (BσA ∈ Dr)

Thus there is some xn such that Pxn (BτA ∈ Dr) ≤ 1
2 . Now suppose that f is bounded and continuous on

∂A→ R such that f vanishes outside of Dr and f ≤ 1 in Dr and f(0) = 1. Then if (i) holds, we have

f(0) ≤ lim supExn [f (BσA)] ≤ lim supPxn (BσA ∈ Dr) ≤
1

2
< 1 = f(0)

which is a contradiction.
We now show that (ii) implies (iii). If 0 < δ < ε then define

fδ(x) = Px ({Bs ∈ A|δ ≤ s ≤ ε}) = E [PBδ(τA > ε− δ)] =

∫
Rd

Py(τA > ε− δ)Px(Bδ ∈ dy)

Note that fδ is continuous for δ > 0 because Bt is continuous. Let

f(x) = Px ({Bs ∈ A|0 < s ≤ ε}) = P(σA > ε)

Then we see that fδ ↓ f pointwise and so f is the infimum of a family of continuous functions and so f is
upper semi-continuous. Now, σA ≥ τA so we have by the upper semi-continuity of f that

lim sup
x→0

Px(τA > ε) ≤ lim sup
x→0

f(x) ≤ f(0) = 0

where the last equality comes from our assumption of (ii).
Finally we show that (iii) implies (i). We know that for all r > 0, by continuity we have

Px
(

max
t∈[0,ε]

|Bt −B0| < r

)
→ 1

as ε→ 0 and that this probability is independent of x. Thus we have

Px(|BτA −B0| < r) ≥ Px
({

max
[0,ε]
|Bt −B0| < r

}
∩ {τA ≤ ε}

)
≥ P0

(
max
t∈[0,ε]

|Bt| < r

)
− Px(τA > ε)

Letting x→ 0 and ε ↓ 0 we get

lim
x→0
x∈A

Px(|BτA − x| < r) = 1

But f is continuous at the origin and bounded on ∂A so we may apply the bounded convergence theorem
to get

lim
x→0
x∈A

Ex [f (BτA)] = f(0)

and so we are done. �

A trivial corollary of Theorem 111 and Proposition 105 is

Corollary 112. If A is a domain such that all boundary points are regular and f : ∂A→ R is bounded and
continuous, then there exists a unique solution to the Dirichlet problem (A, f).

39



Remark 113. While such a result is also available in the theory of PDEs, the use of probability is much
nicer as all of the technical computations are done under the hood after the establishment of Theorem 94.
Moreover, the above method provides a natural way to numerically approximate the value u(x) of a solution
at a particular point; just take a large number of independent Brownian motions started at x and stop them
when they leave A, then take the empirical average of f (BτA). By Theorem 26, this converges to the mean.
In fact, this method is an incredibly fast approach to the problem and is widely used.

Now the only problem is to determine which points are regular. We have already seen one example of
irregular points (namely isolated boundary points), but in dimensions d ≥ 3 there are nonisolated boundary
points that can be irregular (a classic example is Lebesgue’s Thorn; for more information see [Kar91, Mö10]).
There is a strict condition for when a boundary point is regular, called Wiener’s Test, which lies outside the
scope of this talk (see [Mö10, Theorem 8.37] for more information), but we present a slightly easier condition,
called the exterior cone condition.

Definition 114. For y ∈ Rd \ {0} and 0 ≤ θ ≤ π, we define the cone

Cθ(y) = {x ∈ Rd|x · y ≥ |x||y| cos θ}

the set of x whose planar angle relative to y is at most θ. We say that a point x0 ∈ ∂A satisfies the exterior
cone condition if there is some y 6= 0 and some θ ∈ (0, π) such that x0 + Cθ(y) ⊂ Rd \A.

The intuition behind this definition might be a little bit vague, but it comes from the idea that the
existence of an exterior cone at this point makes the point smooth in a certain sense which will then imply
regularity. As one might expect, we have

Proposition 115. If x0 ∈ ∂A satisfies the exterior cone condition then it is regular for A.

Proof. After translation, we may assume that x0 = 0. Let y 6= 0 and θ ∈ (0, π) such that Cθ(y) ⊂ R3 \ A.
Now we note that the the map x 7→ x√

t
is a bijection on Cy(θ). Thus we have by Proposition 53 that

P(Bt ∈ Cθ(y)) = P
(
Bt√
t
∈ Cθ(y)

)
= P(B1 ∈ Cθ(y)) = p > 0

because the gaussian measure and the lebesgue measure are mutually absolutely continuous. But note that
p does not depend on t. Thus we have

P0(σA ≤ t) ≥ P0(Bt ∈ Cθ(y)) = p

and thus, sending t ↓ 0 we have that P0(σA = 0) ≥ p > 0. By Proposition 60, we have that P0(σA = 0) = 1
and so we are done. �

In some sense, the proof helps explain why we chose a cone; after all, we need some set that is invariant
under scaling by any positive factor.

We now have a wealth of information about the Dirichlet problem and can demonstrate (and approximate)
solutions for a large class of sets A and functions f . We now turn to a way that the theory of differential
equations can help us solve a problem in probability.

5.2 Feynman-Kac and an Application

We now turn to a different kind of differential equation, a homogeneous parabolic one. If f is continuous
on Rd and k : Rd → [0,∞) continuous, then we say that u solves a parabolic differential equation with
coefficient k and initial condition f if u : [0,∞)× Rd → R such that{

1
2∆u = ∂u

∂t + ku on (0,∞)× Rd

u(0, x) = f(x) on {0} × Rd

We may proceed in a manner related to, but more involved than, our solution of the Dirichlet problem in the
previous section. Were we to finish the computation, we would arrive at the famous theorem of Feynman
and Kac:
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Theorem 116. Suppose f : Rd → R, k : Rd → [0,∞) are continuous and u : [0,∞) × Rd → R exists such
that for each 0 < T <∞ there exist constants K > 0 and a < 1

2Td such that for all x ∈ Rd, we have

max
[0,T ]
|u(t, x)| ≤ Kea|x|

2

Then u satisfies

u(t, x) = Ex
[
f(Bt) exp

(
−
∫ t

0

k(Bs)ds

)]
We will not prove this theorem here, but [Kar91] has a wonderful section about this topic on which this

talk is based.
In order to make our analysis more tenable, we introduce the Laplace transform.

Definition 117. Suppose f is an integrable function on the positive real line. We define the Laplace
transform as a function on the positive real line

Lf(α) =

∫ ∞
0

e−αtf(t)dt

whenever this is finite for all α > 0.

Remark 118. The Laplace transform is an important tool in the study of ordinary differential equations and
can be found in any book on the subject. The special fact that we will use is that they are unique; this holds
because of the existence of an inverse Laplace transform. To clarify, if Lf = Lg then f and g agree.

We now assume the growth condition

lim
t→∞

e−αtu(t, x) = 0

on any solution to the parabolic PDE above. Then let zα(x) be the Laplace transform of u(t, x) and we
compute

1

2
∆zα =

1

2

∫ ∞
0

e−αt∆udt =

∫ ∞
0

e−αt
(
ku+

∂u

∂t

)
dt

= k

∫ ∞
0

e−αtudt+

∫ ∞
0

d
(
e−αtu

)
+

∫ ∞
0

αe−αtudt = (α+ k)zα − f

Thus by the uniqueness of the Laplace transform, solving the first equation is equivalent to solving

1

2
∆zα = (α+ k)zα − f

With Theorem 116, we know that we must have a similar result for the Laplace transformed expression of
the problem. Indeed, in one dimension, we have

Theorem 119. Let f : R→ R, k : R→ [0,∞) be piecewise continuous and suppose that for all x,

Ex
[∫ ∞

0

e−αt|f(Bt)|dt
]
<∞

Then if we let

z(x) = Ex
[∫ ∞

0

f(Bt) exp

(
−αt−

∫ t

0

k(Bs)ds

)]
we have that z is piecewise C2 and satisfies

1

2

d2z

dx2
+ f = (α+ k)z
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Figure 6: A sample path of linear Brownian motion and its corresponding occupation time of the positive
half line.

Once again, a proof of this theorem (which follows mostly by computation) can be found in [Kar91].
The above seems like it has, once again, been applying the theory of Brownian motion to solve problems

in PDEs. We can, however, apply the theory in the opposite direction as well. The following application
due to Lèvy is a good example of this powerful technique, using Theorem 116 to find the distribution for the
occupation time.

Theorem 120 (Lèvy’s Arcsine Law). Let Bt be a standard linear Brownian motion. We define the occupa-
tion time of the positive halfline as the random function

Γ+(t) =

∫ t

0

1(0,∞)(Bs)ds

the amount of time such that Bt > 0. Then for all fixed t > 0 and for all 0 ≤ a ≤ t, we have

P0 (Γ+(t) ≤ a) =
2

π
arcsin

(√
a

t

)
the arcsine distribution with density given by

ds

π
√
s(t− s)

1[0,t]

Proof. The method of the proof is as follows. We use Theorem 119 to find the (Laplace transform of) the
moment generating function of Γ+(t). We then calculate and show that the Laplace transform of the moment
generating function of the arcsine law is the same. By the uniqueness of the Laplace transform, then, we are
done by Proposition 23

Fix α, λ > 0 and let

z(x) = Ex
[∫ ∞

0

exp (−αt− λΓ+(t))

]
Letting f(x) = 1 and k(x) = λ1(0,∞)(x) we see by Theorem 119 that z satisfies the differential equation

αz = 1
2
d2z
dx2 − λz + 1 x > 0

αz = 1
2
d2z
dx2 + 1 x < 0
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Figure 7: The density of the Arcsine distribution.

and z and z′ are continuous. From the theory of ordinary differential equations, we can solve the above
problem and note that there is a unique (bounded) solution given by

z(x) =


Ae−x

√
2(α+λ) + 1

α+λ x > 0

Bex
√

2α + 1
α x < 0

where A,B are constants determined to make z and z′ continuous at 0. But then we may solve to get

A =

√
α+ λ−

√
α

(α+ λ)
√
α

B =

√
α−
√
α+ λ

α
√
α+ λ

and so we have

z(0) =
1√

α(α+ λ)
=

∫ ∞
0

e−αtE0

[
e−λΓ+(t)

]
dt

This is the Laplace transform of the moment generating function ϕ(λ) of Γ+(t).
Now we note that the moment generating function of the arcsine distribution is given by

ϕ(λ) = E
[
e−λX

]
=

∫ t

0

e−λs

π
√
s(t− s)

ds

Thus we have that the Laplace transform of the moment generating function is given by

Lϕ(α) =

∫ ∞
0

e−αt
∫ t

0

e−λt

π
√
s(t− s)

dsdt =

∫ ∞
0

e−λs

π
√
s

∫ ∞
s

e−αt√
t− s

=
1

π

∫ ∞
0

e−(α+λ)s

√
s

∫ ∞
0

e−αt√
t
dtds =

1√
α(α+ λ)

by the identity ∫ ∞
0

e−at√
t
dt =

√
π

a

Thus the Laplace transforms are the same and so the moment generating functions are the same and so the
distributions are the same by Proposition 23 and we are done. �

We have illustrated in this section a powerful technique of relating PDEs to Brownian motion. Many
more applications can be found in the references below.

43



6 References

[Bil61] Patrick Billingsley. The lindeberg-levy theorem for martingales. Proceedings of the American
Mathematical Society, 12(5):788, October 1961.

[Bro71] B. M. Brown. Martingale central limit theorems. The Annals of Mathematical Statistics, 42(1):59–
66, February 1971.

[Chu00] Kai Lai Chung. A Course in Probability Theory, Third Edition. Academic Press, oct 2000.

[CW76] Rafael V. Chacon and John B. Walsh. One-dimensional potential embedding. Séminaire de
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7 Problem Sets

Some problems are adapted from [Dur10, Kar91, Mö10, Oks19]. Some are classic problems in the field. Some
are either my own creation or remembered from too long ago for me to remember an attribution.

7.1 Problem Set 1

Problem 1. Give an example of

a) a sequence of random variables Xn such that Xn
d−→ X but it does NOT hold that Xn

p−→ X

b) a sequence of random variables Xn such that Xn
p−→ X but we do NOT have Xn → X almost surely.

Problem 2. Let X1, X2, . . . be iid (independent identically distributed) random variables taken from the
uniform distribution on the unit interval. Consider the running maximum

Mn := max
i≤n

Xi

Show that there is a random variable X such that n (1−Mn)
d−→ X and find the distribution of X.

Problem 3. In this problem we introduce the Gaussian distribution. We say that a random variable has a
Gaussian distribution with mean µ and variance σ2 if its law is given by

p(x) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
A standard Gaussian has mean 0 and variance 1.

a) Show the Gaussian tail-bounds, i.e., if X is a standard gaussian, then for any a > 0

e−
a2

2

√
2π

(
1

a
− 1

a3

)
≤ P(X > a) ≤ 1

a

e−
a2

2

√
2π

b) Let X1, X2, . . . be standard Gaussian variables (not necessarily independent). Let Mn be the running
maximum as in the last problem. Show that, almost surely,

lim sup
Mn√
2 log n

≤ 1

c) Now assume that the Xi in the previous part are independent and show that the limit supremum is in fact
equal to 1 in this case.

Problem 4. This problem gives a probabilistic proof of the well known fact that continuous functions on
compact intervals can be uniformly approximated by polynomials. Thus, let f be a continous function on
[0, 1] and define

fn(x) =

n∑
i=0

(
n

i

)
xi(1− x)n−if

(
i

n

)
a) Let X1, X2, . . . be iid Bernoulli(p) r.v.s (i.e., P(Xi = 1) = p and P(Xi = 0) = 1 − p). Let Sn =

X1 + · · ·+Xn. Show

P
(∣∣∣∣Snn − p

∣∣∣∣ > ε

)
≤ 1

4nε2
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b) Because continuous functions are uniformly continuous on compact sets, for all ε > 0, there is some
ε′ > 0 such that if |x − y| < ε′ we have |f(x) − f(y)| < ε for all x, y ∈ [0, 1]. Using this and the above
part, show that for all ε > 0,∣∣∣∣Ef (Snn

)
− f(p)

∣∣∣∣ ≤ ε+ 2

(
max
[0,1]

f

)
P
(∣∣∣∣Snn − p

∣∣∣∣ > ε′
)

c) Show that Ef
(
Sn
n

)
= fn(p) and conclude that sup[0,1] |fn(x)− f(x)| → 0 as n→∞.

Problem 5. Let X1, X2, . . . be iid such that 0 < Xi <∞. Let Sn = X1 + · · ·+Xn and let Ns = supSn<s n.
Show that, almost surely,

Ns
s
→ 1

EX1

(One interpretation for this is to view the Xi as random lifespans of a battery with the battery being instan-
taneously replaced by the next everytime the last one dies. Then Sn is the amount of time that the first n
batteries last in total and Ns is the total number of batteries used up until time s.)

7.2 Problem Set 2

Problem 6. Suppose you are playing a game as follows. There are X1, X2, . . . iid random variables such
that X1 ≥ 0 and E[X1] <∞. At each step you have the choice to continue or to stop. If you continue, you
pay c dollars and receive another Xi. If you leave, you take the Mn dollars, where Mn = maxm≤nXm. A
“strategy” is any stopping time τ (adapted to σ(X1, . . . , Xn) of course) with finite expectation. Your goal is
to choose a strategy to maximize your winnings.

a) One strategy is to pick some a > 0 and let τ = inf{n|Xn > a}. Let Wn be your winnings at time n were
you to leave, i.e., Wn = Mn − cn. Compute E[Wτ ] in terms of a, E[(X1 − a)+], and p = P(X1 > a).
(Hint: Use the tail sum formula which says for X ≥ 0, E[X] =

∫∞
0

P(X > t)dt).

b) Show that there exists a unique solution a = α to the equation E[(X1 − a)+] = c. Show that

Wn ≤ α+

n∑
k=1

(
(Xk − α)+ − c

)
c) Show that if τ is any stopping time such that τ < ∞ almost surely then E[Wτ ] ≤ α. As a bonus, one

might consider the intuition behind restricting focus to stopping times with finite expectation.

Problem 7. Let 0 < p < 1, q = 1− p and suppose that p 6= 1
2 . Let X1, X2, . . . be iid random variables such

that P(Xi = 1) = p and P(Xi = −1) = q. Let Sn = X1 + · · ·+Xn be a random walk and let −a < 0 < b and
τ = inf{n|Sn /∈ (−a, b)} be the stopping time corresponding to leaving the intervale (a, b).

a) What is P(Sτ = −a)? What is P(Sτ = b)?

b) What is E[τ ]?

c) A random walk is recurrent if there exists a number a such that P(Sn = a i.o.) = 1. Is the random walk
described above recurrent?

Problem 8. A function f : Rd → R is called superharmonic if for all x and all small r > 0, it satisfies the
following inequality:

f(x) ≥ 1

|Br(x)|

∫
Br(x)

f(y)dy

(If we have the reverse inequality such a function is called subharmonic and if we have equality, the function
is called harmonic. These functions are very important in the study of elliptic PDEs.)
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a) Let X1, X2, . . . be iid random variables taken uniformly from the unit ball B1(0) and let Sn = X1+· · ·+Xn

be the random walk generated. If f is a superharmonic function, show that f(Sn) is a supermartingale.

b) Using a result from lecture, note that Sn is recurrent in dimensions 1 and 2. Using this fact, show that
if f : Rd → R is a nonnegative superharmonic function where d ∈ {1, 2}, then f is constant.

c) Find a superharmonic function f : Rd → R that is nonnegataive where d ≥ 3. Show that the random walk
Sn above is transient (not recurrent) in dimensions d ≥ 3.

Problem 9. For a martingale (Mn,Fn) such that E
[
M2
n

]
<∞ for all n we define

〈M〉n =

n∑
k=1

E
[
(Mk −Mk−1)2|Fk−1

]
the quadratic variation of M .

a) Show that Xn is a martingale such that E[X2
n] <∞ where

Xn =

n∑
k=1

Mk −Mk−1

1 + 〈M〉k

b) Show that 〈X〉n is increasing and that

〈X〉n ≤
1

1 + 〈M〉0
− 1

1 + 〈M〉n
≤ 1

and deduce that 〈X〉n → 〈X〉∞ almost surely, where 〈X〉∞ ≤ 1.

c) Using the conclusion of the part above and the fact that if Mn is a martingale such that we have E[M2
n] <

∞, then Mn is bounded if and only if E[〈M〉∞] <∞, show that Xn → X almost surely for some X <∞.

d) Using the previous part, show that

lim
n→∞

Mn

〈M〉n
= 0

on the event {〈M〉∞ = ∞}. Hint: the Kronecker lemma might be useful, where the Kronecker lemma
states that if bn is a nonnegative increasing sequence such that bn ↑ ∞, and xn is a sequence such that∑ xn

bn
<∞ then

1

bn

n∑
j=1

xj → 0

e) Put the above to use to prove the “weak” strong law of large numbers: If X1, X2, . . . are independent such
that E[Xi] = 0 and E[X2

i ] ≤ K <∞, then show that n−1Sn → 0 almost surely, where Sn = X1 + · · ·+Xn.

7.3 Problem Set 3

Problem 10. Let Sn be a random walk whose steps are all ±1.

a) Show the reflection principle in discrete time. More precisely show that the number of paths from (0, x)
to (n, y) that touch 0 is the same as the number of paths from (0,−x) to (n, y).

b) Suppose people are voting on which they like better, PROMYS or Ross, and there are p votes for PROMYS
and r votes for Ross, with p > r (PROMYS obviously wins). If we are counting each vote one at a time
and we pick each vote uniformly from the remainder, then what is the probability that PROMYS is always
winning?

Problem 11. Let Bt be a standard Brownian motion.
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a) Show that for all t > 0, we have

lim
n→∞

n∑
k=1

(
B kt

n
−B (k−1)t

n

)2

= t

b) Define the p-variation of a function f : R→ R as

V pt (f) = lim
n→∞

n∑
k=1

∣∣∣∣f (ktn
)
− f

(
(k − 1)t

n

)∣∣∣∣p
If we denote by B the (random) function that takes t 7→ Bt, show that almost surely

V pt (B) =

{
∞ p < 2

0 p > 2

c) Is there a reasonable class C of functions on which we could almost surely make sense of∫ t

0

f(s)dBs(ω)

for all f ∈ C?

d) Can you suggest a reasonable way to define∫ t

0

f(s)(dBs(ω))2

for f in some class of functions C?

Problem 12. We call Bt =
(
B1
t , B

2
t , . . . , B

d
t

)
standard d-dimensional Brownian motion if the coordinates

are independent standard (linear) Brownian motions. Recall that if f ∈ C2
0 is a twice differentiable function

with compact support then we define ∆f =
∑ ∂2f

∂x2
i

= div∇f . Recall also the notation of Ex[·] meaning

expectation with respect to Brownian motion started at x ∈ Rd.

a) Let Bt be a standard Brownian motion in d dimensions. Show that if Px is the probability measure with
respect to Bt started at x, i.e., B0 = x, then we have

Px(Bt ∈ A) =

∫
A

pt(x, y)dy

where

pt(x, y) = (2πt)−
d
2 e−

|x−y|2
2t

b) Show that pt(x, y) satisfies the heat equation, i.e.,

∂pt
∂t
− 1

2
∆ypt = 0

where ∆y is the Laplacian in the y-coordinates:

∆ypt =
∑ ∂2pt

∂y2
j

c) Let f ∈ C2
0 . Show that

f(Bt)−
∫ t

0

1

2
∆f(Bs)ds

is a martingale (with respect to its natural filtration). In particular, if f is harmonic then f(Bt) is a
martingale.
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d) Show that |Bt|2 − dt is a martingale.

e) Let τa = inf{t||Bt| = a}. Show that if |x| < R then Ex[τR] = R2−|x|2
d

Problem 13. This is a continuation of Problem 12. Let 0 < r < R and let TrR = τr ∧ τR. We now restrict
to the case of d = 2.

a) Show that Ex [log |BTrR |] = log |x|.

b) Show that

Px(τr < τR) =
logR− log |x|
logR− log r

where Px is the probability measure associated to Brownian motion starting at x.

c) Show that if x 6= 0 then Px(Bt = 0 for some t <∞) = 0. Conclude that Brownian motion in the plane is
not recurrent.

d) Show that Bt is neighborhood recurrent in that if U ⊂ R2 is any nonempty open set then we have
Px(Bt ∈ U i.o.) = 1.

Problem 14. We now do a similar analysis as Problem 13 but in higher dimensions. Fix d > 2, 0 < r < R,
and Bt a d-dimensional Brownian motion.

a) Show that Ex
[
|BTrR |2−d

]
= |x|2−d

b) Show that

P(τr < τR) =
R2−d − |x|2−d

R2−d − r2−d

c) Is Bt recurrent? Is Bt neighborhood recurrent?

7.4 Problem Set 4

Problem 15. Let ak(t) = E[B2k
t ] and let bk(t) = E[B2k+1

t ].

i) Find recurrence relations for ak(t), bk(t).

ii) Let Z ∼ N(0, 1) and let mn = E[Zn]. Find mn for all n.

iii) Show that E
[
etZ
]

= e
t2

2 .

Problem 16. Let Bt be standard Brownian motion in d dimensions with filtration Ft, let a ≥ 1
2 , and let

dXt =
a

Xt
dt+ dBt

if such a process exists. Let T = inf{t|Xt = 0} and consider Xt only on the time interval [0, T ). Fix
0 < r < R and let τ = inf{t|Xt ∈ {r,R}}. For r ≤ x ≤ R let ϕa(x) = Px(Xτ = R) where Px is the
probability measure associated to Xt where X0 = x.

i) Let Yt = E
[
1{Xτ=R}|Ft

]
. Show that Yt is a martingale and show that Yt = ϕa(Xt∧τ ).

ii) Find a stochastic differential equation for ϕ(Xt), i.e., find functions u1, u2 such that

d(ϕ(Xt)) = u1dt+ u2dBt

iii) Show that u1 = 0 and use this fact to find an ordinary differential equation for ϕa. Show that ϕa(r) = 0
and ϕa(R) = 1 and use this to find the function ϕa(x).

49



iv) Let Mt = |Bt| =

√
(B

(1)
t )2 + · · ·+ (B

(d)
t )2. Show that if if a = d−1

2 then Mt = Xt. Provide another
proof that Brownian motion is neighborhood recurrent in dimension 2 and transient in dimensions d ≥ 3.

Problem 17. In this problem we explore the so-called “Brownian Bridge”

i) Fix x and show that

Xt = xt+ (1− t)
∫ t

0

dBs
1− s

satisfies

dXt =
x−Xt

1− t
dt+ dBt

on [0, 1).

ii) Show that Xt → x almost surely as t→ 1.

iii) One interpretation of the above process is that Xt is Brownian motion “conditioned” on the event that
B1 = x. Explain why this makes sense intuitively. Explain why this does not make sense in a rigorous
manner.

Problem 18. Let Bt be standard linear Brownian motion and consider

dXt = −Xtdt+ dBt

with X0 = x0.

i) Explicitly find a process Xt that satisfies the above differential equation.

ii) Now let x0 = 0 and find α(t) such that Bα(t) is the same process as Xt above. Find 〈X〉t.

iii) Show that no matter what x0 is, that if Z ∼ N(0, 1) then Xt
d−→ Z.
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