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1 Introduction

The following is an important application of the theorem of Riemann and Roch. The Riemann-Hurwitz
formula allows one to compare genera of nonsingular curves over algebraically closed fields and is used often
in computations. We first set up some of the requisite commutative algebra and then prove the theorem.
Following this, we present two applications of the formula, one to the abstract theory of fields and a surprising
application to a version of Fermat’s last theorem for polynomials. We fix the following notation in the sequel.
All of our fields will be algebraically closed, we set f : X → Y as a finite separable morphism of two curves
X,Y over k. All curves are nonsingular and projective. Note that the case char k > 0 is included, but it is
here that the separability condition must be checked carefully.

2 Some Commutative Algebra

2.1 Length of a Module

Much like we have a concept of dimension of a vector space, we wish to have a concept of ‘dimension’ of a
more general R-module. We call this notion the length.

Definition 1. Let M a finite R-module. Then M has a Jordan-Hölder decomposition of well-defined length
l. Let l(M) = l. In particular, l is the maximal n such that there exists a chain

0 = M0 (M1 ( ... (Ml = M

or, equivalently is the length of such an ascending chain where Mi/Mi−1 is simple.

Remark 2. Note that if R = k a field then M becomes a vector space and it is easy to check that l(M) =
dimkM , thus making length a true generalization of dimension.

We use the following lemma to calculate length of modules over certain types of rings.

Lemma 3. Let (R,m) be a valuation domain. Then let M = R/me Then l(M) = e.

Proof. Identify the ideals mi ⊂ R with their images in R/me. Then consider the ascending chain

0 = me/me ( me−1/me ( ... ( R/me = M

Letting Mi = me−i/me, we see that Mi/Mi−1 ∼= me−i/me−i+1 which is a one dimensional vector space over
R/m, so Mi/Mi−1 is simple. �

There is much more to be said about lengths of modules; the curious reader is referred to a good book
on commutative algebra, with Matsumura’s and Eisenbud’s being especially recommended.
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2.2 Invertible Modules and Divisors

Recall that localization at a multiplicatively closed subset is functorial and is exact, meaning that if S ⊂ R
is a multiplicatively closed subset and M,M ′,M ′′ are R modules, and

0 M ′′ M M ′ 0

is exact, then

0 S−1M ′′ S−1M S−1M ′ 0

is also exact. Moreover, we have a canonical isomorphism for two R-modules M,N

S−1(M ⊗N) ' (S−1M)⊗ (S−1N)

We now define

Definition 4. Let R be a Noetherian ring and M a finite R-module. Then the support of M , Supp(M) is
the set of prime ideals p ∈ SpecR such that Mp 6= 0.

We make use of the following proposition.

Proposition 5. Let R be a ring and M a finite R-module with m ∈ M . Let p ⊂ R be a prime ideal and
let mp denote the image of m in Mp. Then mp 6= 0 if and only if Ann(m) ⊂ p. Thus m = 0 if and only
if mp = 0 for all p ∈ SpecR. More generally, Mp 6= 0 if and only if Ann(M) ⊂ p and so Mp = 0 for all
p ∈ SpecR if and only if M = 0. Thus Supp(M) = V (Ann(M)) and in particular Supp(M) is closed in the
Zariski topology.

Proof. The first statement follows from the statement that if a ∈ Ann(m) then m = a
am = 0 so if a 6∈ p then

mp = 0. The converse is easy. We note that m = 0 if and only if Ann(m) = R which is true if and only if
there is no prime p such that Ann(m) ⊂ p, proving the second statement. The corresponding statments on
finite modules can be passed to the case of generators and the last statement is immediate. �

Now it behooves us to introduce a concept that may seem unmotivated. For those that are interested in
the reason we make use of this definition, I recommend the study of schemes.

Definition 6. Let M be an R-module. We say that M is locally free if for all p ∈ SpecR, there exists an
element f /∈ p such that for some r ∈ N, Mf

∼= R⊕rf . If R is irreducible, then it is clear that r is constant
and we say that M is locally free of rank r. If M is locally free of rank 1, we say that M is invertible.

Remark 7. The reasoning behind calling M invertible is that if we let M∨ = Hom(M,R) then we get that
M ⊗M∨ ∼= R. Because R⊗M ∼= M , we can form the Picard Group, PicR, as the set of isomorphism classes
of invertible modules with group operation the tensor product. It is easy to check that this is an abelian
group.

While the definition above may seem a little bit odd to one unfamiliar with algebraic geometry, it should
be clear why the picard group is important after the following proposition.

Proposition 8. Let X be a curve over k and let ClX be the class group. Let M be an invertible OX module.
Every such module is given up to isomorphism by a set of pairs (fi, gi) such that fi ∈ OX such that the set
of fi generates the unit ideal, gi ∈ (OX)×fi and for each i, j, the element gi/gj ∈ (OX)×fifj . Then there is an

isomorphism φ : PicOX → ClX given by

M 7→
∑
P∈X

fi /∈p

vP (gi) · P

where the sum is finite because OX is Noetherian.

Proof. This is a pretty easy exercise. First check that the map is well-defined. After this, showing that it is
an isomorphism is easy. �

We conclude our discussion of algebra with the study of differentials.

2



2.3 Kähler Differentials

We begin with some commutative algebra, in particular, we define the module of differentials.

Definition 9. Let B be an A-algebra. Then we define an A-derivation as an A linear map d : B → M for
some B-module M that satisfies

d(bb′) = bdb′ + b′db

d(a) = 0

We define the Kähler differentials to be the module of universal derivations, i.e., there is a derivation called
the exterior derivative d : B → ΩB/A such that if d′ : B → M is a derivation, then there exists a unique
φ : ΩB/A →M such that the following diagram commutes

B ΩB/A

M

d

d′

φ

We recall without proof the following proposition from commutative algebra:

Proposition 10. Let A
f→ B

g→ C be morphisms of rings. Then we have

ΩB/A ⊗B C ΩC/A ΩC/B 0α β

Where the map α is given by α(da⊗ b) = bd(g(a)) and β is projection.

Proof. Find a good commutative algebra textbook. �

Remark 11. As will soon become clear, in our case, we will essentially always be applying Proposition 10 in
the case A = k with B,C as k-algebras and the morphism B → C given by a morphism of varieties.

We will be making use of the following proposition:

Proposition 12. Let K/k be a finite, separable extension. Then dimK ΩK/k = tr.deg.K/k.

Proof. Find a good commutative algebra textbook. �

Remark 13. If K/k is not separable then we get a strict inequality dimK ΩK/k > tr.deg.K/k.

Recall that we have an equivalence between finite type k-algebras and varieties over k that preserves
dimension as transcendence degree. This leads us to the definition

Definition 14. Let X/k be a curve and let B = OX be the coordinate ring of X. We let ΩX/k = ΩOX/k.
For any point P ∈ X defined by ideal p ⊂ OX , we define ΩX,P = (ΩX)p. Given a morphism f : X → Y of
curves over k, we let ΩX/Y = ΩOX/OY

with ΩX/Y,P = (ΩX/Y )p where the point P ∈ X is given by the ideal
p and we let f∗ΩY = ΩY ⊗OY

OX be base extension, with localization analogous to the above.

For our purposes, the above definition will suffice, as we will be restricting our focus to curves. Before
we move on, we consider the notion of det as a morphism of R-modules.

Definition 15. Let M be a locally free R-module of rank r. We define detM =
∧r

M . Thus detM is an
invertible module.

Note that this definition of the determinant corresponds to our notion in that if M is a vector space and
φ : M → M is a morphism, then detφ = det(M) in the usual sense. We have that det behaves well with
respect to exact sequences.
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Proposition 16. Let M,M ′,M ′′ be locally free R modules such that we have an exact sequence

0 M ′ M M ′′ 0

Then detM ∼= (detM ′)⊗ (detM ′′).

Proof. Because localization is exact, it suffices to check on free modules. Then the proof is trivial by choosing
bases. �

Letting ωX = det ΩX , we note that ωX 7→ KX , the canonical class. In our case, we refer only to curves,
and so ΩX = ωX , but this is not true in higher dimensions. We are now ready to proceed with the geometry.

3 Riemann-Hurwitz

We entirely restrict our attention to curves. In the sequel, let X,Y be nonsingular projective curves and let
all morphisms be finite and separable (for those who do not know what these words mean, take finite to
mean that general points have finite preimages and consider our work only over characteristic 0 to allow for
us ignoring separable.) We begin with

Lemma 17. Let f : X → Y be a morphism. Then we have a short exact sequence

0 f∗ΩY ΩX ΩX/Y 0

Proof. By Proposition 10, it suffices to prove injectivity of the first map. By Proposition 5, it suffices to
demonstrate this injectivity after localizing at the minimal prime, namely (0) ⊂ OX . For convenience of
notation, we drop the localization at 0 from our notation, but all modules should be taken to be over K(X).
We have ΩY = ΩK(Y )/k and ΩX = ΩK(X)/k so by Proposition 12 and the fact that tr.deg.K(Y )/k =
tr.deg.K(X)/k = 1, we get that dimK(X) f

∗ΩY = dimK(X) ΩX = 1 so it suffices to prove that the map
f∗ΩY → ΩX is nonzero. However, we have that ΩX/Y = ΩK(X)/K(Y ) is separable and finite so algebraic so
by Proposition 12, dim ΩX/Y = 0 so ΩX/Y = 0. By exactness in the second term given by Proposition 10,
we have that f∗ΩY → ΩX is surjective and so it is nonzero and we are done. �

For the remainder of the section, we will find it convenient to fix notation. Let f : X → Y a morphism of
curves such that P ∈ X, and Q = f(P ) ∈ Y . Let t be a local parameter at Q and let u be a local parameter
at P . Then we see immediately that ΩY,Q is generated over OY,Q by dt and ΩX,P is generated over OX,P
by du. We thus get that there exists a unique g ∈ OP such that f∗dt = gdu. We define dt/du = g. We now
have the key proposition relating ΩX/Y to ramification.

Proposition 18. Let f : X → Y be a finite, separable morphism of curves. Let char k - eP for all P ∈ X.
Then Supp ΩX/Y = {p ∈ SpecOX |eP > 1} and (ΩX/Y )P is principal with length vP (dt/du) = eP − 1.

Proof. From Lemma 17, we have a short exact sequence

0 f∗ΩY ΩX ΩX/Y 0

and localizing is exact, so we get

(ΩX/Y )P ∼= (ΩX/f
∗ΩX/Y )P ∼= (ΩX)P /(f

∗ΩY )P

But we know that (ΩX)P = OP · du and (f∗ΩY )P = OP · ( dtdudu). Thus their quotient is just OP /(
dt
du ). Note

that OP /(
dt
du ) 6= 0 if and only if dt

du is not a unit if and only if vP ( dtdu ) > 0. Thus ΩX/Y has support precisely

when vP ( dtdu ) > 0. Thus it will suffice to show that vP ( dtdu ) = vP (t) − 1 = ep − 1. Now suppose that f has

ramification index e at P so t = aue for some a ∈ O×P . Then by the Leibniz rule,

dt = aeue−1du+ aeuda = ue−1(aedu+ auda)
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But a ∈ O×P so vP (a) = 0. Thus we get that vP ( dtdu ) = e − 1 as desired. Applying Lemma 3 yields the last
statement. �

Remark 19. When the condition char k - eP is satisfied, we say that the point P is tamely ramified ; otherwise,
we say that P is wildly ramified. We generally use the result for k = C so this is not such an important point
for our purposes, but it should be noted that if P is wildly ramified then vP (dt/du) > eP − 1. To see this,
note that in the calculation of dt, we get that char k|e so e = 0 ∈ k and so the first term drops out, yielding
dt = aueda. But then we see that l(ΩX/Y )P > eP − 1.

Corollary 20. If f : X → Y is a finite separable morphism of curves, then there are finitely many ramified
points.

Proof. By Proposition 18 we have that Supp ΩX/Y is given exactly by the ramification points. But we know
that Supp ΩX/Y is closed by Proposition 5 and closed sets in X that are not all of X are finite. But we know
that ΩX/Y is not supported everywhere because (ΩX/Y )(0) = 0 by the proof of Lemma 17. �

By Corollary 20, we can take sums over ramification points and be assured that they are finite. Thus,
we let

Definition 21. We define the ramification divisor to be

R =
∑
P∈X

l((ΩX/Y )P ) · P

Remark 22. Note that the above definition is valid because if P ′ ∈ X is unramified, then l((ΩX/Y )P ′) =
1− 1 = 0 and so this is just a sum over ramification points.

We now arrive at the first part of the main theorem.

Theorem 23 (Riemann-Hurwitz). Let f : X → Y be a finite separable morphism of curves. Let KX ,KY

be the canonical divisors for X,Y respectively. Then

KX ∼ f∗KY +R

Proof. From Lemma 17, we have an exact sequence,

0 f∗ΩY ΩX ΩX/Y 0

From Proposition 16, we get det ΩX ∼= det f∗ΩY ⊗ det ΩX/Y . But formation of exterior powers commutes
with base extension so we get ωX ∼= f∗ωY ⊗det(ΩX/Y ). Let D be the divisor associated to det(ΩX/Y ) under
the mapping in Proposition 8. Then we get that KX ∼ f∗KY + D and it suffices to show that D = R. To
do this, it suffices to consider the result locally at any point P ∈ X. But (ΩX/Y )P ∼= det(ΩX/Y )P and we
have by Proposition 18 that l(ΩX/Y )P = vP (dt/du) so we are done. �

Corollary 24 (Riemann-Hurwitz). Let f : X → Y be a finite separable morphism of curves with all
ramification tame. Then

2gX − 2 = (deg f)(2gY − 2) +
∑
P∈X

eP − 1

Proof. We know that degKX = 2gX − 2 and similarly for KY . We know that deg f∗KY = (deg f) degKY

and Proposition 18 gives us in the case of tame ramification l((ΩX/Y )P ) = ep− 1. Thus this follows trivially
from Theorem 23 and the fact that degree is defined up to rational equivalence. �

Remark 25. Note that in general Theorem 23 applies, although the proof may be slightly different. The
separability condition becomes important in Corollary 24 where the equality turns into an inequality because
of the discussion in Remark 19 and we instead get

2gX − 2 > (deg f)(2gY − 2) +
∑
P∈X

eP − 1

This last is the traditional degree formula of Riemann and Hurwitz. We now proceed to a few examples.
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4 Applications

4.1 Lüroth’s Theorem

Our first application of Riemann-Hurwitz is to a theorem from algebra called Lüroth’s Theorem. Note that
in general, the theorem holds for all fields, not just algebraically closed ones, but our proof only holds for
the latter case because the work up to this point has had this assumption. We first need a few lemmata.

Lemma 26. Let X be a curve such that P,Q ∈ X are distinct points such that P ∼ Q. Then X ∼= P1.

Proof. By definition of rational equivalence, P ∼ Q implies that there exists some f ∈ K(X) such that
(f) = P −Q. Then we have that k(f) ↪→ K(X) induces a map φ : X → P1. Letting O = [0 : 0 : 1], note that
φ∗O = P so deg φ = 1, which means that φ is birational. But nonsingular rational curves are isomorphic to
P1 so we are done. �

Lemma 27. Let X be a curve of genus 0. Then X ∼= P1.

Proof. If X is a curve of genus 0, let P,Q be distinct points and let D = P−Q. Then we note that degD = 0,
and degK = 2g−2 = −2 and so l(K−D) = 0. Applying Riemann-Roch, we see that l(D)−0 = 0+1−0 = 1.
Thus we have D ∼ 0 meaning that P ∼ Q. We are done by Theorem 26 �

Lastly, we need a result relating genera of two curves.

Lemma 28. Let f : X → Y a finite morphism of curves. Then gX ≥ gY .

Proof. If gY = 0 then this is clear because g ≥ 0. Otherwise, gY ≥ 1 and by Corollary 24, we have
2gX − 2 = deg f(2gY − 2) +

∑
eP − 1. Solving for gX , we have

gX ≥ gY + (deg f − 1)(gY − 1) +

∑
eP − 1

2

But deg f ≥ 1 and gY − 1 ≥ 0 so we are done. �

Remark 29. Note that the above proof gives the stronger statement that for f separable we achieve equality
in genera if and only if deg f = 1 and f is unramified.

We are now ready to proceed to the proof of Lüroth’s theorem.

Theorem 30 (Lüroth). Let k ⊂ L ⊂ k(t) be a tower of fields with k = k. Then L is purely transcendental.

Proof. We may assume that k 6= L so tr.deg.k L > 0 by k being algebraically closed. But tr.deg. L ≤ 1
because L ⊂ k(t) so tr.deg.k L = 1. But now we have that there exists a curve X/k such that L = K(X).
The morphism L ↪→ k(t) induces a morphism φ : P1 → X. By Lemma 28, we have 0 ≤ gX ≤ 0 = gP1 . By
Lemma 27, X ∼= P1. But then L ∼= k(t) so there exists some u ∈ L such that L = k(u) and we are done. �

4.2 Fermat’s Last Theorem for Polynomials

As another application, we prove a version of Fermat’s Last Theorem, but for polynomials. Consider the
following.

Theorem 31. Let k be an algebraically closed field and f, g, h ∈ k[s, t] be nonconstant homogeneous polyno-
mials such that fn + gn = hn with char k - n. Then n ≤ 2.

Proof. We first introduce the set Y = V+(xn + yn − zn) ⊂ P2, i.e., we have Y = {[s : t : z] : sn + tn = zn}
and consider the morphism π : Y → P1 projection onto the first two factors, i.e, π([s : t : z]) = [s : t]. We
will use Corollary 24 to determing gY . Recall that∑

P 7→Q
eP = deg π
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and that for any point [s : t : z] ∈ Y ∩ U2, we have [s : ζint : z] ∈ Y ∩ U2 as well and so for [s : t] ∈ P1 such
that sn + tn 6= 0, we have n distinct points P ′i = [s : ζint : z] ∈ π−1([s : t]). Thus deg π = n. We must now
consider the branch locus. The branch locus is the set of all Qi ∈ P1 such that sn + tn = 0. Clearly there
are precisely n such points Qi = [1 : ζin]. Moreover, π−1(Qi) = {[1 : ζin : 0]} = {Pi}. By Equation (4.2), we
must have ePi

= n. Thus there are n ramification points each of index n. By Corollary 24, we get

2gY − 2 = deg π(2gP1 − 2) +
∑
P∈X

eP − 1

Plugging in our known values we get

2gY − 2 = n(−2) + n(n− 1)

and solving for gY gives

gY =
(n− 1)(n− 2)

2

Now suppose that f, g, h are nonconstant and satisfy Fermat’s identity. Then we can define a finite map
φ : P1 → Y given by

φ([s : t]) = [f(s, t) : g(s, t) : h(s, t)]

By Lemma 28, we know that 0 = gP1 ≥ gY ≥ 0. Thus we have 0 = (n−1)(n−2)
2 and we are done. �

Remark 32. Note that if char k|n then we lose our separability hypothesis and the theorem fails. To see that
it fails, let f, g, h be nonconstant polynomials such that f + g = h. Then we note that fp

r

+ gp
r

= hp
r

by
Frobenius and pr gets arbitrarily large.
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