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The representation theory of Sn has been well-studied classically. It has been known essentially since the
dawn of the study of groups what the conjugacy classes of the symmetric groups are, and so the number
of these representations was discovered early. As [OV] note, there are two main classical approaches to
the study of the simple representations of Sn. The first, and most classical, is the manipulation of Young
tableaux and Specht modules. The second is to study the representations of GLC(n) using Schur functors
and then apply Schur-Weyl duality to get the representations of Sn. While both methods have their merits,
the method of [OV] has a few primary advantages, which they list. We focus on the fact that this approach
provides a natural way to use the inductive structure of this family. As such, instead of an ad hoc attempt
to find for some simple representation of Sn the restrictions to Sk or induction to Sm for some k ≤ n ≤ m,
these functorial constructions fall naturally out of the theory developed. Moreover, the key step in the proof
is to show that the spectrum of a special algebra with respect to certain distinguished elements is given by
integer vectors satisfying certain technical conditions coming directly from Coxeter relations. This further
justifies the approach exposited below, as the family Sn is a family of coxeter groups. In the sequel, we
occasionally refer to [FS], an exhaustive account of the details of [OV], especially when the latter decides to
elide over proofs of nontrivial results.

We proceed in three parts. In the first, we introduce the topic and prove that the family Sn has simple
branching. In the second part, we introduce the YJM elements and describe the representation theory of
the degenerate affine Hecke algebra H(2), using this analysis to show that the spectrum consists of integers.
In the third lecture, we prove the main theorem of classification and discuss some applications.

The only prerequisites are some knowledge of the representation theory of finite groups over C. A quick
review is provided here.

1 Gelfand-Tsetlin Algebras and Simple Branching

Some of the results below apply to more general families of groups or algebras than just the family of
symmetric groups. As such, we define

Definition 1. An inductive family of groups is {Gi}i∈N such that Gi < Gi+1 for groups Gi. For any i, let
Ĝi be the set of simple representations of Gi (up to isomorphism). Let the branching graph of the family
{Gi} be defined as follows. Let the vertices be ⋃

i

Ĝi

and call the V λ ∈ Ĝi the ith level. For V µ ∈ Gi−1 and V λ ∈ Gi, the number of edges connecting V µ and
V λ is the multiplicity of V µ in ResSn−1 V

λ, or dim HomSn−1(V µ, V λ). We say that the family has simple
branching when there is at most one edge connecting any two vertices.

We need some notation. We say V µ ↗ V λ if there is at least one edge connecting V µ and V λ. For
V µ ∈ Ĝj < Ĝi we say that V µ ⊂ V λ if there is an ascending path in the branching graph from V µ to V λ.
We may write this path as µ↗ λ1 ↗ · · · ↗ λ. Consider the following trivial example:
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Example 2. Let Gi = Zpi the cyclic group of order pi. Let Gi < Gi+1 be embedded by 1 7→ p. Because
Gi is abelian, all simple representations are characters, given by χa : Gi → C by χa(1) = ζapi . Note that the

restriction of χa to Gi−1 is given by χa(p) = ζappi = (ζppi)
a = ζapi−1 . Thus χa restricts to a (mod pi−1). Thus

the branching graph at the ith level connects χa ∈ Ĝi with one edge to each χa+pir ∈ Ĝi+1. Note that this
family has simple branching.

The purpose of the current talk is to show that Sn has simple branching, which is the first main component
in finding the simple representations. The reason for this is as follows. If a family has simple branching,
there is a canonical decomposition

ResGiGi−1
V λ =

⊕
µ↗λ

V µ

For each of the V µ ∈ Ĝi−1, we may repeat the process. By induction, we obtain

ResGn1 V λ =
⊕
P

VP

Where P is a path λ0 ↗ λ1 ↗ · · · ↗ λn = λ and we are summing over all of these paths that terminate in
λ. Note that VP is a simple G0 = {1} representation, so is one dimensional. We may choose a G-invariant
inner product and a unit vector vP ∈ VP for all paths P , giving us a basis for V λ.

Definition 3. The Gelfand-Tsetlin (GZ) basis for a simple representation V λ of Gn for {Gn} an inductive
family of groups with simple branches is {vP } where P varies over all paths λ0 ↗ · · · ↗ λ.

Now, note that vP ∈ V λi for all 0 ≤ i ≤ n in the path P and so, by irreducibility, we have C[Gi]·vP = V λi

for all i. If v′ ∈ V λ were another vector with this property, then v′ ∈ V λi for all i and so, by simple branching,
v′ and vP differ only by a scalar.

With the GZ-basis defined, we now define the GZ-algebra.

Definition 4. Let Z(n) be the center of C[Gn], the set of all elements α ∈ C[Gn] that commute with all
other elements. Define the Gelfand-Tsetlin (GZ) algebra to be

GZ(n) = 〈Z(1), Z(2), . . . , Z(n)〉 ⊂ C[Gn]

the subalgebra generated by all of these centers.

We have the following obvious result:

Lemma 5. For all n, GZ(n) is commutative.

Proof. We induct. The statement is clear for n = 1. Supposing it holds for GZ(n − 1), we note that
GZ(n) = 〈GZ(n−1), Z(n)〉 and both GZ(n−1) and Z(n) are commutative. But by the definition of center,
because GZ(n− 1) ⊂ C[Gn−1] ⊂ C[Gn], we have that GZ(n− 1) and Z(n) commute. �

Currently, it might appear that the GZ-basis and -algebra are related by no more than name. The
following proposition will dispell all such notions.

Proposition 6. The GZ-algebra consists precisely of all operators diagonal with respect to the GZ-basis.

Before we can prove this, we need a classical result:

Lemma 7 (Wedderburn). As an algebra, we have

CGn =
⊕
λ

End(V λ)

where the sum is over all simple representations V λ.
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Proof. Let ϕ : CGn →
⊕

End(V λ) be given by ϕ(g) = (ρλ(g))λ and extended by linearity. This is clearly
a morphism of algebras. Note that dimC CGn = |Gn| and the dimension over the right side is the sum of
the squares of the dimensions of the irreducible representations of Gn, which we know to be |Gn|. Thus
it suffices to know that ϕ is injective. To see this, note that the regular representation is the sum of all
irreducible representations with multiplicities given by their dimensions. Thus if ϕ(α) = ϕ(α′) then α and
α′ must act identically on the regular representation, but the regular representation is faithful. �

Proof of Proposition 6. By Lemma 7, we may choose πλi ∈ CGi that is projection to Vλi , i.e., is the identity
in End(V λi) and zero elsewhere. Then it is clear that πλi ∈ Z(i) ⊂ GZ(n). Thus we may let πP =
πλ0

πλ1
· · ·πλ ∈ GZ(n). Then πP is projection to VP . Let GZ ′(n) be the space of operators diagonal with

respect to the GZ-basis. Then GZ ′(n) = 〈πP 〉P so GZ ′(n) ⊂ GZ(n). But the set of diagonal matrices is a
maximal torus, so GZ ′(n) = GZ(n) by maximality. �

We now reach the key criterion for simple branching. Recall that if N ⊂ M is a subalgebra, then the
centralizer Z(M,N) is the set of all elements in M that commute with all elements in N . We have:

Proposition 8. We have that Z(M,N) is commutative if and only if for any V µ ∈ N̂ , V λ ∈ M̂ , the
multiplicity of V µ in ResMN V λ is at most one.

Proof. Because M is semi-simple and the statements above factor through direct summation, we may assume
that M is simple. Let V be the nontrivial simple M -module such that M = End(V ). Then we may consider

NV = ResMN V and break down NV as a sum of isotypical components:

NV =
⊕
i

V mii

Then the N -linear endomorphisms are exactly given by Z(M,N) by the Double Centralizer Theorem (see
[Pie]). Thus we have

Z(M,N) = End(NV ) =
⊕
i

End(V mii )

Now note that the right hand side is a sum of matrix rings and so commutes if and only if mi ≤ 1 for all i,
as desired. �

We will use Proposition 6 to show that Sn has simple branching. We need a few results first. We recall
that a C∗-algebra is an algebra over C with an anti-symmetric conjugate linear involution ∗. We have

Lemma 9. A C∗-algebra is commutative if and only if all elements are normal. If all real elements in A a
C∗ algebra are self-conjugate, then A is abelian.

Proof. To show the first, one direction is trivial, so suppose all elements are normal and let A be a C∗
algebra. For any element a ∈ A, we have

a =
a+ a∗

2
+ i

a− a∗

2i

Let Asa be the subspace of self-adjoint elements. Then we have A = Asa⊕ iAsa by the above decomposition.
Let a, b ∈ Asa. Then we have (a + ib)∗ = a∗ − ib∗ = a − ib. Thus by all elements being normal we have
(a+ ib)(a− ib) = (a− ib)(a+ ib). Thus we have

a2 − iab+ iba+ b2 = a2 + iab− iba+ b2 or

ab = ba

Thus all self adjoint elements commute and so xy = (x1 + ix2)(y1 + iy2) = (y1 + iy2)(x1 + ix2) = yx.
To prove the second statement, we have A = AR ⊕ iAR. If a, b ∈ AR we have ab ∈ AR so

ab = (ab)∗ = b∗a∗ = ba

and so AR is abelian. But then so is A. �
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Now we introduce a lemma specific to Sn and we have

Lemma 10. For all permutations σ ∈ Sn, there is an element τ ∈ Sn−1 such that σ−1 = τστ−1

Proof. Note that σ, σ−1 are of the same cycle type so they are clearly conjugate in Sn. Let σ′ ∈ Sn−1 be
the element obtained from σ by removing n from whichever cycle in which it appears and leaving everything
else the same. Then we have τ ∈ Sn−1 such that τσ′τ−1 = σ′−1. Now consider τ ∈ Sn as fixing n. Then
τστ−1 = σ−1. �

Example 11. As an example of the above method, consider σ = (1 2 3)(4 5) ∈ S5. Then σ−1 = (1 3 2)(4 5).
We delete 5 from σ and get σ′ = (1 2 3) which is conjugate to σ′−1 by τ = (2 3). Then it is elementary to
check that σ−1 = τστ−1.

We are now ready to prove our final result, giving simple branching of Sn.

Proposition 12. The centralizer Z(CSn,CSn−1) is commutative.

Proof. By Lemma 9, it suffices to show that if α ∈ Z(n, n − 1) is real then α∗ = α, where (ag)∗ = ag−1.
But let α =

∑
agg with ag ∈ R. We know that α commutes with CSn−1 and by Lemma 10 we may choose

τg ∈ Sn−1 ⊂ CSn−1 such that τggτ
−1
g = g−1 = (gi)

∗. But note that α commutes with τg so τgατ
−1
g = α

and so, because ag is real, we have (agg)∗ = agg
−1. But if α = τgατ

−1
g then ag = ag−1 and so α∗ = α as

desired. �

We now, finally, have our result.

Theorem 13. The branching graph of the symmetric groups is simple.

Proof. Combine Propositions 8 and 12. �

2 Young-Jucys-Murphy elements and representations of H(2)

Recall: last lecture, we proved that ResSnSn−1
V λ splits into distinct irreducibles. In this lecture we will

introduce the Young-Jucys-Murphy (YJM) elements of C[Sn], prove they generate GZ(n), and study their
action on the irreps of Sn. This gives an alternate proof that ResSnSn−1

V λ splits into distinct irreducibles,
but also allows further analysis of the explicit action of Sn on its irreps.

Definition 14. The YJM element Xi ∈ C[Si] is given by

Xi := (1 i) + (2 i) + . . .+ (i− 1 i) =
∑

σ∈Si a 2-cycle

σ −
∑

σ∈Si−1 a 2-cycle

σ (1)

for i > 1, and when i = 1 by X1 = 0.

The second part of the definition serves to motivate the YJM element a little bit. We wish to show that
the YJM elements generate GZ(n) = 〈Z(1), . . . , Z(n)〉, so certainly the YJM elements should be related to
central elements in some way. We will show that C[Sn] is algebraically generated by elements of the form∑
σ∈Sn a k-cycle σ, of which the simplest nontrivial case is

∑
σ∈Sn a 2-cycle σ. It might be natural to look for

elements Xi which lie in Z(i), but since we wish to in some way induct from GZ(n) = 〈Z(1), . . . , Z(n)〉 to
GZ(n+1) = 〈Z(1), . . . , Z(n+1)〉, so hopefully it is at least believable at this stage that taking the difference
of the simplest nontrivial generator of Z(n + 1) with the simplest nontrivial generator of Z(n) might be
a good choice. We will use the fact that Xi is a difference of central elements in C[Si] and C[Si+1] quite
frequently in what follows.

Theorem 15. For any n ≥ 2, GZ(n) = 〈X1, . . . , Xn〉.
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Proof. ⊃ follows immediately since Xi is a difference of an element of Z(i) and Z(i− 1) as discussed above,
and Z(i), Z(i− 1) ⊂ GZ(n).

For ⊂ we induct. For the base case, C[S2] is commutative and X2 = (12) generates it, so assume
GZ(n− 1) = 〈X1, . . . , Xn−1〉. Hence we must prove Z(n) ⊂ 〈GZ(n− 1), Xn〉, and clearly it suffices to show
Z(n) ⊂ 〈Z(n − 1), Xn〉. It is easy to check that for any finite group G, Z(C[G]) is generated as a C-vector
space by elements of the form KC :=

∑
g∈C g, as C ranges over all conjugacy classes. Hence we must show

that for any partition λ, the associated element KC lies in 〈GZ(n− 1), Xn〉.
Define the support of a permutation σ ∈ Sn to be the number of elements in {1, . . . , n} which it does

not fix, and define the support of a conjugacy class to be the size of the support of any permutation it
contains (note that this only refers to a single element of the conjugacy class rather than the class itself,
since each element is moved by some element of any non-identity conjugacy class). We show that each KC

lies in 〈GZ(n− 1), Xn〉 by inducting on the size of the support. For the base case where C is the conjugacy
class of the identity, KC = 1 which clearly lies in 〈GZ(n− 1), Xn〉, so suppose for the inductive hypothesis
that KC ∈ 〈GZ(n − 1), Xn〉 for all C of support ≤ k. Let Cλ be the conjugacy class corresponding to
λ = (λ1, . . . , λt, 1, . . . , 1), where λ is any partition such that Cλ has support k + 1, and has more than one
nontrivial cycle (so t ≥ 2). Letting C`,n be the conjugacy class of `-cycles in Sn, the element

KCλ1,n
·KCλ2,n

· · ·KCλt,n
= KCλ + (terms of support ≤ k),

where the second term denotes a linear combination of elements KC for C of support ≤ k. By inductive
hypothesis, the latter terms lie in 〈Z(n − 1), Xn〉, and each term KCλi,n

does as well, using the fact that∑
i λi = k + 1 and each λi is at least 1. Hence KCλ = KCλ1,n

· · ·KCλt,n
− (terms of support ≤ k) ∈

〈Z(n− 1), Xn〉.
It remains to show that KC ∈ 〈Z(n − 1), Xn〉 where C is the conjugacy class of all (k + 1)-cycles. For

this, we have by inductive hypothesis that KCk,n ∈ 〈Z(n − 1), Xn〉, and clearly KCk,n−1
∈ 〈Z(n − 1), Xn〉,

hence their difference
∑

1≤i1,...,ik−1≤n distinct(i1, . . . , ik−1, n) lies in 〈Z(n− 1), Xn〉. Now,

Xn ·
∑

1≤i1,...,ik−1≤n distinct

(i1, . . . , ik−1, n) (2)

is a product of terms (j n)(i1 . . . , ik−1 n), for i1, . . . , ik−1 distinct and j 6= n possibly equal to one of the i`.
Such terms fall into two cases:

• If j 6∈ {i1, . . . , ik−1}, then (j, n)(i1 . . . ik−1 n) = (i1 . . . ik−1 j n) is a single (k + 1)-cycle.

• If j = i` for some `, then (j n)(i1 . . . ik−1 n) = (n i1 . . . i`−1)(i` . . . ik−1) is a product of two cycles,
though one cycle may be trivial (or both may be trivial when k = 2 as we saw before). The size of the
support is k or k − 1.

Hence (2) is equal to
Ck+1,n + (terms of support ≤ k), (3)

so Ck+1,n ∈ 〈Z(n− 1), Xn〉, completing the proof.
�

We now relate the YJM elements to the GZ basis, starting with the claim that the GZ basis is a
simultaneous eigenbasis for GZ(n). This follows because each element of GZ(n) is a linear combination of
elements

∏
i xi where xi ∈ Z(ni) for some sequence of integers 1 ≤ ni ≤ n, and each xi acts by a scalar on

any irrep of Sni and hence acts as a scalar on the GZ basis.

Definition 16. For a vector v in the GZ basis of some irreducible representation of Sn, we say its weight is
α(v) = (a1, . . . , an) ∈ Cn where ai is the eigenvalue of Xi on v. We denote the set of all weights by Spec(n).

The following definition and proposition begin to get to the heart of why the YJM elements capture the
inductive structure of the chain S1 ⊂ S2 ⊂ . . .. To motivate the definition, note that if si = (i i + 1) is a
Coxeter generator, si commutes with Xj for j 6= i, i + 1; for i > j + 1 this is immediate, and for i < j we
have that (i i+ 1)((i n) + (i+ 1n)) = (i+ 1n) + (i n). Furthermore, siXi + 1 = Xi+1si.
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Definition 17. The degenerate affine Hecke algebra H(2) is the C-algebra with generators Y1, Y2, s satisfying
relations s2 = 1, Y1Y2 = Y2Y1, and sY1 + 1 = Y2s.

Proposition 18. C[Sn] is generated by C[Sn] and a copy of H(2) with generators Y1 = Xn−1, Y2 = Xn, s =
sn. (note that there are also relations between elements of this copy of H(2) and of C[Sn], e.g. the Coxeter
relations sn−1snsn−1 = snsn−1sn).

This motivates the study of the representations of H(2) (H(2)-modules), which in view of the previous
proposition can be used to understand the action of GZ(n) = 〈X1, . . . , Xn〉 on irreps of Sn, and hence under-
stand the possible weight vectors. We note that each nonzero simple H(2)-module contains a simultaneous
eigenvector v of Y1 and Y2, and by the defining relations of H(2) we see that the module must be spanned
by v and sv. In particular, all simple H(2)-modules have dimension at most 2.

Proposition 19. Let V = Span(v, s · v) be a simple representation of H(2) such that Y1 · v = a1v and
Y2v = a2v and one (and thus both) of Y1, Y2 are diagonalizable on V . Then

1. a1 6= a2.

2. V is one dimensional if and only if a2 = a1 ± 1.

3. If a2 6= a1 ± 1 then, with respect to the basis {v, sv}

Y1 =

(
a1 0
0 a2

)
, Y2 =

(
a2 0
0 a1

)
, s =

( 1
a2−a1 1− 1

(a2−a1)2

1 1
a1−a2

)
.

Proof. Since Y1 and Y2 commute, they have a simultaneous eigenbasis in any simple H(2)-module. Letting
v be a simultaneous eigenvector, we have that Y1v = a1v, Y2v = a2v for some a1, a2. Then by the relation
sY1 + 1 = Y2s,

Y1(sv) = (sY2 − 1)v = a2(sv)− v (4)

Y2(sv) = (sY1 + 1)v = a1(sv) + v. (5)

Hence V is spanned by v, sv, so its dimension is ≤ 2. If V is one-dimensional, then there is a constant c ∈ C
for which sv = cv. Because s2 = 1, c2 = 1 so c = ±1. We now have that Y1(sv) = a1cv and Y2(sv) = a2cv,
so (4) becomes a1cv = a2cv − v, so c(a2 − a1) = 1. Hence a2 − a1 = ±1. Conversely, suppose a2 = a1 ± 1,
and so we have from 1 = Y2s− sY1 that, by applying this equality to v,

v = 1 · v = (Y2s− sY1)v = a2(sv)− a1(sv) = ±sv

This proves the backward direction of (2).
If V is 2-dimensional then (4) yields

Y1 =

(
a1 −1
0 a2

)
, Y2 =

(
a2 1
0 a1

)
, s =

(
0 1
1 0

)
(6)

in the basis v, sv. If a1 = a2 then Y1, Y2 cannot be diagonalized, but since the Xi are diagonalizable on irreps
V λ of Sn, such a representation cannot occur in the decomposition of V λ into irreps of 〈Xi, Xi+1, si〉. This
proves (1).

Now, if a2 6= a1 ± 1 then {v, s · v} span V still and thus we may write the operators with respect to this
basis as

s =

(
0 1
1 0

)
, Y1 =

(
a1 −1
0 a2

)
, Y2 =

(
a2 1
0 a1

)
by the identities above. But we have the matrices for Y1, Y2 are diagonalizable if and only if a1 6= a2, in
which case we have an eigenvector (1, 0) corresponding to eigenvalues of a1 and a2 for Y1 and Y2 respectively,
and (1, a1 − a2) corresponding to eigenvalues of a2 and a1 respectively. Thus we immediately get that
v′ = v + (a1 − a2)(sv) is an eigenvector of both Y2, Y1 with eigenvalues a2, a1 respectively.

If |a1 − a2| = 1 then v± sv is an eigenvecor of Y1 and Y2; but it is clearly also an eigenvector of s, hence
s, Y1, Y2 commute, so V is one-dimensional. This proves the forward direction of (2). �
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Corollary 20. Let α = (a1, . . . , an) ∈ Spec(n) be a weight with corresponding eigenvector vα in the GZ
basis. Then

1. ai 6= ai+1 for all i.

2. For all i, ai+1 = ai ± 1 if and only if sivα = ±vα.

3. If ai+1 6= ai ± 1 then α′ = siα = (a1, a2, . . . , ai−1, ai+1, ai, ai+2, . . . , an) ∈ Spec(n). Moreover,

vα′ = sivα −
1

ai+1 − ai
vα

and Span(vα, vα′) is invariant under the action of Xi, Xi+1, si, with these actions represented by

Xi =

(
ai 0
0 ai+1

)
, Xi+1 =

(
ai+1 0

0 ai

)
, si =

(
1

ai+1−ai 1− 1
(ai+1−ai)2

1 1
ai−ai+1

)
.

Proof. Note that we have Xi, Xi+1, si satisfy the relations to define H(2). Also note that by definition,
Xi, Xi+1 are simultaneously diagonalizable, with respect to the GZ-basis. Thus all results follow immediately
from Proposition 19 except for the last statement in (3). To see that α′ = s · α ∈ Spec(n), we note that for
j 6∈ {i, i + 1} we have Xjsi = siXj and so Xjvα′ = Xjs · vα = sXj · vα = ajvα′ . Thus α′ ∈ Spec(n) and
v′ = vα′ as desired. �

Remark 21. The reader who has seen the representation theory of Lie algebras or Lie groups may note
that the method of finding subalgebras isomorphic to H(2) and studying how they act on representations
of Sn is very similar to the way representations of Lie algebras (resp. Lie groups) are built from copies of
representations of sl2 (resp. With point (3) of Corollary 20 in mind, we have the following definition:

Definition 22. A permutation σ ∈ Sn is admissible for α ∈ Cn if it is in the subgroup of Sn generated by
all of the si such that ai+1 6= ai ± 1.

The reason for this definition should be clear: the set of admissible permutations acts on Spec(n) by (3)
in Corollary 20 (and we will see later that it acts on Cont(n) too).

3 Main Theorems

We now change tacks slightly to introduce some of the requisite combinatorics. After this short interlude, we
will be prepared to prove the main theorem. Recall that given a partition λ of some integer n, we may form
the Young diagram associated to λ by creating an array of squares with λi squares in the ith row. See Figure
1 for an example. We denote by Y the Young graph, which has vertices the Young tableau for any partition

0 1

-1 0

-2

(a)

0 1 2

-1 0

-2

(b)

0

-1

-2

(c)

0 1 2 3

(d)

Figure 1: Young tableaux with the contents of their boxes corresponding to (a) λ = (2, 2, 1), (b) λ = (3, 2, 1),
(c) λ = (1, 1, 1), and (d) λ = (4)

λ and has an edge between µ, λ if and only if µ ⊂ λ and λ/µ is exactly one box; in this case we write µ↗ λ.
See Figure 2 for an example. Given a box in a Young diagram, we define the content of the box to be the
difference of the x- and y-coordinates. See Figure 1 for an example. We may define Tab(λ) to be the set of
paths in Y ending in λ and Tab(n) to be the union of all Tab(λ) such that |λ| = n. A convenient way to
bookkeep this information is to put the number i into λi/λ0i− 1 if we have a path ∅ ↗ λ1 ↗ · · · ↗ λ. We
have the following definition:
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(a)

•

(b)

•
(c)

•
(d)

Figure 2: (a) is the partition µ = (2, 2, 1) and (b), (c), (d) are the partitions that µ has an edge to, with the
extra box marked by •.

Definition 23. For T ∈ Tab(n) we define the content vector

c(T ) = (c(λ1/λ0), c(λ2/λ1), . . . , c(λi/λ0i− 1), . . . , c(λn/λn−1)) ∈ Zn

This defines a map c : Tab(n)→ Zn and we define the image Im c = Cont(n) ⊂ Zn. We say that two paths
are equivalent, T ≈ T ′ if and only if they end on the same vertex in Y, i.e., are the same shape.

It is immediate that the content map c : Tab(n) → Zn is injective; indeed, counting the number of
appearances for each value in the content vector yields the number of boxes on each diagonal, which uniquely
determines the tableau. Our end goal is to show that Cont(n) = Spec(n), but we have a number of results
to establish before this. We first give a criterion for when a vector is a content vector.

Proposition 24. For α ∈ Cn, we have α ∈ Cont(n) if and only if the following conditions hold:

1. a1 = 0.

2. For all q > 1, we have {aq + 1, aq − 1} ∩ {a1, . . . , aq−1} 6= ∅.

3. For all q > 1, if there is some p < q such that ap = aq = a, then {a− 1, a+ 1} ⊂ {ap+1, . . . , aq−1}

Proof. To show necessity, note that the first box is always in position (1, 1) so has content 0. For the second
condition, note that we can add boxes only at the ends of rows and at the bottoms of columns. The third
condition follows from the same reasoning: if ap = aq then ap, aq lie on the same diagonal and there must be
both a box above and a box to the left of λq/λq−1 which must have been placed after the pth box. To show
sufficiency, merely note that we can inductively construct a path T ∈ Tab(n) by placing boxes corresponding
to these contents in the unique place allowed. �

An example path is shown in Figure 3 We need one more result, regarding the equivalence relation defined

0 ↗ 0 1 ↗
0 1
-1 ↗

0 1

-1
-2 ↗

0 1

-1 0
-2

Figure 3: A sample path corresponding to the content vector (0, 1,−1,−2, 0) ending in a partition of shape
(2, 2, 1)

above, before we can finally unify the theory.

Proposition 25. Let α, β ∈ Cont(n). Then α ≈ β if and only if there is an admissible permutation σ ∈ Sn
such that the σ · α = (aσ·i)1≤i≤n = β.

Proof. We show that if α is of shape λ, then by under some admissible permutation σ, σ · α is equivalent
to Tλ ∈ Tab(λ), the path that gives rise to the standard Young tableau of shape λ, where box i in row j is
given the number λ1 + · · ·+ λj−1 + i, which has content vector

c(Tλ) = (0, 1, 2, . . . , λ1 − 1,−1, 0, . . . , λ2 − 2,−2, . . . , λn − n)
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We proceed by induction. Clearly the result holds for n = 1. Suppose it holds for all m < n. Let i be the
last box of the last row of Tα, the path such that c(Tα) = α. Then we cannot have ai+1 = ai ± 1 because
the boxes above and to the left of box i must already have been filled in and, because we are in the last box
of the last row, we cannot have box i+ 1 be to the right or below box i. Thus si is admissible and α ≈ si ·α.
But now i+ 1 is admissible with respect to si · α for the same reason and α ≈ (si+1si) · α. Continuing, we
have α ≈ (sn−1 . . . si)α = α′. We then have that α′ has box n as the last box of the last row. Let box i′ be
the farthest box to the right of the farthest down row such that α′ and c(Tλ) do not agree. Then we may
apply our inductive hypothesis to the content vector (a1, . . . ai′) and we are done. �

Thus we have that admissible permutations preserve ≈ on Cont(n). Just as we have an equivalence
relation on Cont(n), so, too, do we have one on Spec(n):

Definition 26. Let α, α′ ∈ Spec(n). Then we have α ∼ α′ if and only if there is some V λ ∈ Ŝn such that
α, α′ ∈ V α, i.e., they belong to the same simple representation of Sn.

Note that we have shown from point (3) in Corollary 20 that if σ ∈ Sn is admissible, then we have
α ∼ vσ·α. We will show that this relation agrees with our relation on Cont(n), in fact,

Proposition 27. For all n, Spec(n) ⊂ Cont(n) and, moreover, if α, β ∈ Spec(n) such that α ≈ β then
α ∼ β.

In fact, we will show equality above of both of these relations. Before we do this, however, we need two
lemmata.

Lemma 28. If α = (a1, . . . , an) ∈ Cn such that ai = ai+2 = ai+1 − 1 for some 1 ≤ i ≤ n − 2 then
α 6∈ Spec(n).

Proof. We know from (2) in Corollary 20 that sivα = vα and si+1vα = −vα and so we have (sisi+1si)·vα = vα
while (si+1sisi+1) · vα = −vα. But it is easy to see that

sisi+1si = (i i+ 1)(i+ 1 i+ 2)(i i+ 1) = (i i+ 2) = (i+ 1 i+ 2)(i i+ 1)(i+ 1 i+ 2) = si+1sisi+1

. Thus we have a contradiction. �

Lemma 29. If α = (a1, . . . , an) ∈ Spec(n) then a1 = 0 and α′ = (a1 . . . , an−1) ∈ Spec(n− 1).

Proof. First, X1 = 0 so a1 = 0. Now, by definition of Xi, ai, vα, we have Xi ·vα = ai ·vα for all 1 ≤ i ≤ n−1.
Thus, α′ ∈ Spec(n− 1). �

Example 30. Consider Spec(2) and Cont(2). It is clear that Cont(2) = {(0, 1), (0,−1)} because there are
only two partitions of 2. By definition, X2 = (1 2) and so if v ∈ V+ the trivial representation then X2 ·v = v
and otherwise X2 · v = −v. Thus we have Spec(2) = {(0, 1), (0,−1)} = Cont(n).

We are now ready to prove the key proposition.

Proof of Proposition 27. By Proposition 24, it suffices to show those three conditions. By Lemma 29, we
have a1 = 0 so the first condition holds. We prove the other two by induction. We have already established
the result for n = 2 in the example above, and the case n = 1 is trivial. Thus we may assume that the
result holds for all m < n > 2 and in particular Spec(n− 1) ⊂ Cont(n− 1). Let α = (a1, . . . , an) ∈ Spec(n).
Then, by Lemma 29, α′ = (a1, . . . , an−1) ∈ Spec(n − 1). Thus in conditions (2) and (3) of Proposition 24,
we may assume that q = n. Suppose that {an − 1, an + 1} ∩ {a1, . . . , an−1} = ∅. Then sn−1 is admissible
so (a1, . . . , an, an−1) ∈ Spec(n) and so, again by Lemma 29, we have (a1, . . . , an−2, an) ∈ Spec(n − 1) ⊂
Cont(n− 1). But then we have {an− 1, an + 1} ∩ {a1, . . . an−2} = ∅ which contradicts Proposition 24. Thus
criterion (2) holds.

Now that there exists some p < n such that ap = an = a and a − 1 6∈ {ap+1, . . . , an−1}. Without
loss of generality, we may choose p maximal subject to these conditions, i.e., a 6∈ {ap+1, . . . , an−1}. Now,
because p is maximal and we have (a1, . . . , an−1) ∈ Cont(n − 1), we have that a + 1 can appear at most
once in {ap+1, . . . an−1}. Suppose a + 1 does not appear in this set. Then we may continually apply
admissible transpositions to α to get α ∼ α̃ = (a1, . . . , ap−1, . . . ap, an, . . . ) ∈ Spec(n). But ap = an and
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this contradicts (1) of Corollary 20. Now suppose that a + 1 ∈ {ap+1, . . . , an−1}. Then, by a sequence
of admissible transopositions, we have α ∼ α̂ = (a1, . . . , ap−1, . . . , ap, a + 1, an, . . . ) ∈ Spec(n), but this
contradicts Lemma 28. The argument applies mutatis mutandis for a− 1. Thus, Spec(n) ⊂ Cont(n) for all
n.

For the last statement, we have by Proposition 25 that α ≈ β if and only if there is an admissible
permutation σ such that σ · α = β. But by (3) of Corollary 20, this implies that α ∼ β. �

Remark 31. Note that the above proof immediately yields the fact that Spec(n) ⊂ Zn, a statement which
is not at all easy. Despite the fact that [OV] cites this fact without proof, we were unable to replicate this
result independent of the fact that every irreducible representation of Sn is realizable over Q, a fact that we
derive from the classification below.

We are now ready to prove the final result and give an application.

Theorem 32. We have Spec(n) = Cont(n), and on this set, ≈ and ∼ agree. The branching graph of {Sn}
is given by Y.

Proof. Note that the last statement follows immediately from the first two and the preceding results. Let
pn be the number of integer partitions of n. Then we have that |Cont(n)/ ≈ | = pn because there is
a bijection between shapes of Young diagrams of total weight n and partitions of n. We also know that
|Spec(n)/ ∼ | = pn because the left hand side is the number of simple representations of Sn, which is given
by the number of conjugacy classes of the same: pn. Thus we have |Cont(n)/ ≈ | = |Spec(n)/ ∼ |. From
Proposition 27, we have that |Spec(n)/ ∼ | ≤ | Spec(n)/ ≈ | but also since Spec(n) ⊂ Cont(n), we have

|Spec(n)/ ∼ | ≤ | Spec(n)/ ≈ | ≤ |Cont(n)/ ≈ | = |Spec(n)/ ∼ |

and so each of the inequalities must be an equality, which then implies that Spec(n) = Cont(n) and ≈ and
∼ agree, as desired. �

We now give an example of S3. Now, in reality, we already know what the representations are, but we
shall proceed as if we were to be ignorant of this. First, note that we must have three simple representations,
corresponding to each of the three shapes in Figure 4 with shapes (3), (1, 1, 1), and (2, 1). In the first

0 1 2

0

-1

-2

0 1

-1

Figure 4: The possible simple representations of S3 with contents filled in.

case, there is only one way of filling in boxes and so the conjugacy class under ≈ of a content vector in
this representation is the singleton given by (0, 1, 2). Thus by Theorem 32 the corresponding representation

V is one dimensional. We get more than this, however, because we now have the action ofX2 = (1 2)
and X3 = (1 3) + (2 3) on this element. We see that the actions of each of these permutations is trivial,

and, because these permutations generate S3, we see that V is trivial. Similarly, we have that there
is a unique way of filling in the boxes for the shape λ = (1, 1, 1) with content vector (0,−1,−2). And we

see in a similar way that each transposition acts as negation, giving V as the alternating representation.
For the last representation, we have two content vectors v = (0, 1,−1) and w = (0,−1, 1). We may use
the YJM elements to see exactly what the transpositions do to our vectors. Note that (1 2) · v = v while
((1 3) + (2 3)) · v = −v and the opposite for w. It might be instructive to match this to what we already

know. In particular, we must have V is the representation given by W = {a1e1 + a2e2 + a3e3 ∈
C2|a1 + a2 + a3 = 0} which has as a basis v = −e1− e2 + 2e3 and w = e1− e2, which is easily checked. Even
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without this knowledge, by Corollary 20, we know exactly what the action of each Coxeter generator si is
on the vα, so, in principle, we know the action of every permutation σ ∈ S3 on each of the basis vectors.

In the introduction, we promised a better way to think about induction and restriction. This is summa-
rized in the following:

Corollary 33. Let k ≤ n, µ a partition of k and λ a partition of n. Define mµλ as the number of paths in
Y from µ to λ. We have the following:

ResSnSk V
λ =

⊕
µ⊂λ

(V µ)⊕mµλ IndSnSk V
µ =

⊕
µ⊂λ

(V λ)⊕mµλ

Proof. The first is immediate from the definition of a branching graph and the fact that Sn has simple
branching, coupled with the fact that the restriction functor is transitive. The second follows from Frobenius
reciprocity. �

We conclude by showing that Sn satisfies a very special rationality property.

Proposition 34. All simple representations of Sn are realizable over Q.

Proof. For σ ∈ Sn let `(σ) be the number of i < j such that σ · i > σ · j and for T ∈ Tab(λ), define
`(T ) = `(σ), where σ ·Tλ = T , where Tλ was defined in the proof of Proposition 25. If πT denotes orthogonal
projection to VT as in Proposition 6. Then we have VT = πTσ · VTλ and σ is admissible so we have

σ · vTλ = vT +
∑

T ′∈Tab(λ)
`(T ′)<`(T )

γT ′vT ′

where each of these γT ′ ∈ Q by the fact that Spec(n) ⊂ Zn and (3) of Corollary 20 �

Note that we have now accomplished all of our goals that we set out to. We now have a complete
description of the simple representations of Sn over C, with a very explicit basis for each one. Because
the elements of the basis are indexed by Young tableaux of shape λ, we in particular have a partition
λ canonically associated to each irreducible representation, hence for Sn the bijection between conjugacy
classes and irreducible representations is canonical. Moreover, we have a natural way to induce and restrict
representations, that follows immediately from the construction (see Corollary 33). Now, if we wished, we
could do the reverse of the normal construction and apply Schur-Weyl duality to construct Schur functors,
the simple representations of GL(V ).
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