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1 Introduction

Representation theory is a fascinating field of math with applications to group theory, number theory,
algebraic geometry, physics, and much more, as well as being an interesting study in its own right. We
will be restricting our focus specifically to the representations of the Lie algebra sl2. This lecture (series)
will be in two parts. We will begin by setting up the representation theory of sl2, in particular finding all
of the irreducible representations and computing the representation ring. No background in representation
theory is assumed. The second part of the series will be devoted to applying our knowledge of representation
theory to some problems in combinatorics. The mathematician Richard P. Stanley was instrumental in the
development of these techniques, exemplified by [Sta89], with results from [Alm] also covered. Partly because
the primary aim of these two lectures is to apply representation theory to combinatorics, and partly because
of the richness of the field, we will be completely unable to do the discipline justice in these two lectures.
The interested reader is referred to [FH].

2 Lie Algebras and Representations

2.1 Definitions and Basics

We work exclusively over C with finite dimension.

Definition 1. A Lie algebra is a vector space V over C equipped with a map [·, ·] : V × V → V called the
Lie bracket that satisfies

• Bilinearity, i.e, for any α, β ∈ C, X,X ′, Y ∈ V , we have

[αX + βX ′, Y ] = α[X,Y ] + β[X ′, Y ]

[Y, αX + βX ′] = α[Y,X] + β[Y,X ′]

• Alternating on V , i.e, for all X ∈ V , [X,X] = 0

• Jacobi Condition, i.e., for all X,Y, Z ∈ V ,

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0

The dimension of the Lie algebra V is just its dimension as a vector space over C. A morphism of Lie
algebras V,W is a linear map ρ : V →W that is compatible with the bracket, i.e.,

ρ([X,Y ]) = [ρ(X), ρ(Y )]
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Remark 2. Note that we can combine the first two conditions to get anticommutativity, i.e., for allX,Y ∈ V ,
[X,Y ] = −[Y,X]. This is because we have

0 = [X + Y,X + Y ] = [X,X] + [X,Y ] + [Y,X] + [Y, Y ] = [X,Y ] + [Y,X]

On the other hand, the Jacobi condition guarantees that all associative Lie algebras are trivial in that the
bracket is just the 0 map.

Example 3. Let V = C3 and let [X,Y ] = X × Y the cross product. It is easy to see that this forms a Lie
Algebra.

Example 4. The classical examples all come from matrices. We define gln = Mn(C) with the bracket
[X,Y ] = XY − Y X. It is easy to check that this forms a Lie algebra.

The theory of Lie algebras is rich, but we will be restricting ourselves to discussion of their representations.

Definition 5. A representation of a Lie algebra g is a morphism to gl(V ) with dimension defined as the
dimension of V . A subrepresentation is a subspace V ⊂ gln that is stable under the action of g. Given two
representations V and W , we can form their direct sum V ⊕W and their tensor V ⊗W such that if v ∈ V ,
w ∈W and X ∈ g then

X · (v, w) = (X · v,X ·W )

X · (v ⊗ w) = (X · V )⊗ (X ·W )

An irreducible representation is a representation that has only the trivial representation as a subrepresen-
tation. A semisimple representation is a representation that is decomposable as a direct sum of irreducible
representations. A morphism of representations is a linear map φ : V → W such that for all X ∈ g, v ∈ V ,
X · φ(v) = φ(X · v).

An easy example of a representation is taking the identity map on gn. We recall two key theorems
without proof.

Theorem 6. Let g be a semisimple Lie algebra. Then any representation of g is semisimple.

Proof. See [FH, Theorem 9.19] �

Theorem 7 (Lie). Let g ⊂ gl(V ) be a solvable, semisimple Lie algebra. Then there exists a nonzero v ∈ V
such that v is an eigenvector for all X ∈ g.

Proof. See [FH, Theorem 9.11] �

We now narrow our focus to a particular Lie algebra, sl2.

2.2 The Representation Theory of sl2

We begin with a definition.

Definition 8. Let sl2 be the set of traceless 2× 2 matrices with bracket

[X,Y ] = XY − Y X

Note that this is clearly a Lie algebra because it inherits its bracket from that in Example 4. We wish to
study the representation theory of sl2. We first state without proof that sl2 is semisimple. Thus we have

Corollary 9. All representations of sl2 are semisimple.

Proof. This is a special case of Theorem 6. �
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Thus it suffices to consider the irreducible representations of sl2. First, we would like a nice way to think
about sl2. We know that it is a vector space (of dimension 3) so it has a basis. Note that a representation
of sl2 is uniquely determined by its action on this basis. Let us choose

E =

[
0 1
0 0

]
F =

[
0 0
1 0

]
H =

[
1 0
0 −1

]
A quick computation shows the following relations:

[E,F ] = H

[H,E] = 2E

[H,F ] = −2F

Thus, a dimension n representation of sl2 is uniquely determined by choosing three n × n matrices that
satisfy the above relations. Through abuse of notation, we will identify the elements of the above basis of
sl2 and its image in the representation.

We now begin some computations. Let v ∈ V be an eigenvector for H with eigenvalue λ:

Hv = λv

We now consider

H(Ev) = (HE)v = ([H,E] + EH)v = (2E + EH)v = 2Ev + E(λv) = (λ+ 2)Ev

Thus we note that Ev is also an eigenvector for H with eigenvalue λ+ 2! Similarly,

H(Fv) = ([H,F ] + FH)v = (−2F + FH)v = (λ− 2)v

Let Vλ be the eigenspace of H with eigenvalue λ. Then we see by above that

E : Vλ → Vλ+2

F : Vλ → Vλ−2

Now, by Theorem 7, we have that H has at least one eigenvalue, but it has a finite number of eigenvalues
by finiteness of dimension. Let λ be the maximal eigenvalue and let v ∈ V be nonzero such that Hv = λv.
Let us define Wv = Span{v, Fv, F 2v, ...}. Then we have that Ev = 0 because λ is maximal. Then we show

Proposition 10. Let W be defined as above. Then W is an irreducible representation of sl2. Moreover, all
irreducible representatcions of sl2 arise in this way.

Proof. If Wv is a representation, it is clear that it is irreducible. Moreover, given that Wv is a representation,
then any representation V clearly contains a Wv for some nonzero v ∈ V so if V is irreducible then V = Wv.
Thus it suffices to show that the actions of E,F,H on Wv preserve Wv. Clearly F (Fnv) = Fn+1v ∈ Wv.
We saw above that HFnv = (λ − 2n)v. Thus it suffices to show that EFnv ∈ Wv. We show by induction
that EFnv = (n− 1)(λ−n)Fn−1v ∈Wv. For n = 0, we have Ev = 0 as above. Suppose the result holds for
n− 1. Then we have

EFnv = EFFn−1v = [E,F ]Fn−1v + FEFn−1v

= HFn−1v + F (n− 2)(λ− n+ 1)Fn−2v = (λ− 2(n− 1) + (n− 2)(λ− n+ 1)Fn−1v = (n− 1)(λ− n)Fn−1v

Thus E,F,H take Wv to Wv and so Wv is a representation. �
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Note that EFnv = 0 if and only if (λ− n)(n− 1) = 0. By the finiteness of dimension we must have λ is
a positive integer. Thus, letting V ′j be the one dimensional space spanned by w such that Hw = jw, we get
that for some n,

Wv =

n⊕
i=0

V ′n−2i

Let Vn be the irreducible representation with maximal eigenvalue (we will call these weights from now on)
n. Then we have proven

Theorem 11. Each and every irreducible representation of sl2 is uniquely determined by its maximal weight
n− 1 and is termed Vn. Then dimVn = n and Vn is the sum of one dimensional weight spaces each having
weight n − 1 − 2i for 0 ≤ i ≤ n − 1. All finite dimensional representations of sl2 are sums of Vn’s and can
be thought of as

W =
⊕
j

V ⊕ajnj

Definition 12. Let W be a representation of sl2. A weight space, Wi of weight i is the eigenspace of H
each of whose vectors has eigenvalue ni. For the remainder of the work, after fixing a representation W , we
reserve di = dimWi

Definition 13. A sequence {a1, ..., an} is unimodal if there exists some k ∈ {1, 3, ..., n} such that

a1 ≤ a2 ≤ ... ≤ ak ≥ ak+1 ≥ ak+2 ≥ ... ≥ an

Such a sequence is symmetric if ai = an−i.

Corollary 14. For any representation W of sl2, the sequences {d2i}i∈Z and {d2i+1}i∈Z are unimodal and
symmetric about 0.

Proof. By Theorem 11, the statement holds for irreducible representations. By Corollary 9, W is semisimple.
But the sequences corresponding to a direct sum is the sum of the sequences so the result holds in general. �

We note that Corollary 14 is the foundation of our applications to combinatorics. The technique involves
associating a combinatorial object to a representation of sl2 with the sequence that we want to count
being associated to the di. Then Corollary 14 gives us symmetry and unimodality. Before we begin the
combinatorics, though, we need to introduce another concept.

2.3 The Representation Ring

Temporarily returning to the general theory, we quickly prove an important lemma.

Lemma 15 (Schur). If V,W are irreducible representations and φ : V → W is a morphism, then either
φ = 0 or φ is an isomorphism.

Proof. Given a morphism of representations φ : V →W it is easy to see that the kernel and image are both
subrepresentations. But V,W are irreducible so if the kernel is not all of V , in which case φ is constant, then
φ is injective and the image must be all of W by irreducibility. �

Recall by Theorem 6 that any representation W of a semisimple Lie algebra g can be expressed as a
(direct) sum

W =
∑

wiWi

For wi ∈ N ∪ {0} and Wi distinct irreducible representations. From Lemma 15, it is clear that such an
expression is unique. Thus it may behoove one to study the commutative monoid generated by the irreducible
representations, or, if one likes a little bit more structure, to study the free Z-module generated by the
irreducible representations. Let R be this abelian group.
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Remark 16. For lovers of category theory, note that Lemma 15 and Theorem 6 imply that R is exactly the
Grothendieck group associated to the category of representations of g, where the abelian group is generated
on isomorphism classes of representations, [V ], and quotiented out by the relations [V ] + [V ′] − [V ⊕ V ′].
Thus R = K0(C[sl2]).

There is a natural way to impose a ring structure on R. If V, V ′ are two representations of g, then let
[V ][V ′] = [V ⊗ V ′]. This turns R into a ring.

Definition 17. Given a Lie algebra g, the representation ring of g, called R is the free abelian group
generated by isomorphism classes of representations quotiented out by the additive relation on short ex-
act sequences, and endowed with a product through the tensor product. Note that R is a commutative,
associative ring.

Remark 18. For g a semisimple Lie algebra, the discussion above states that if {Wi} is the set of irreducible
representations, then

R =
⊕

ZWi

Combining the above results, we get

Proposition 19. Let g = sl2. Then we get that the representation ring

R = Z⊕
⊕
n∈N

ZVn

where Vn is the unique irreducible representation of dimension n.

Note that there is a bijective correspondence between finite dimensional representations of sl2 and ele-
ments of R with all coefficients nonnegative integers. From now on, fix our Lie algebra to be sl2 and R to
be the representation ring.

Definition 20. We turn R into a Z/2Z graded module by letting

Re = {
∑

aiVi|ai = 0 for i odd}

Ro = {
∑

aiVi|ai = 0 for i even}

It is easy to compute the sum of two elements in R, but the product at first seems more difficult. We fix
this by citing some plethyism, noting

Proposition 21 (Clebsch-Gordan). For m ≥ n, we have

Vm ⊗ Vn = Vm+n−1 ⊕ Vm+n−3 ⊕ ...⊕ Vm−n+1

In particular,
V2 · Vn = Vn+1 + Vn−1 ∈ R

so R is generated over Z by V2. Thus sending V2 7→ t gives an isomorphism R→ Z[t].

Proof. This is an easy computation on weight spaces and is left to the reader. �

Call a representation homogeneous if the corresponding element of R is homogeneous. Applying Propo-
sition 21 immediately yields

R = Ro ⊕Re

Ro ·Ro ⊂ Re

Ro ·Re ⊂ Ro

Re ·Re ⊂ Re

Thus R is a Z/2Z graded algebra. For ease of computation, we introduce a formal x such that

V2 = x+ x−1
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Proposition 22. With definitions as above,

Vn =
xn − x−n

x− x−1

Proof. Let us induct. This is trivially true for n = 2. Suppose the result holds for Vn. Then, applying
Proposition 21, we have

Vn+1 = V2Vn − Vn−1

= (x+ x−1)
xn − x−n

x− x−1
− xn−1 − x1−n

x− x−1

=
xn+1 − x−n+1

x− x−1

�

More computations in the representation ring are to follow, and thus our representation theory is not
over. We will, however, begin our discussion of combinatorics.

3 Symmetric Unimodal Sequences and sl2

We begin by recalling

Definition 23. A sequence {a1, ..., an} is unimodal if there exists some k ∈ {1, 3, ..., n} such that

a1 ≤ a2 ≤ ... ≤ ak ≥ ak+1 ≥ ak+2 ≥ ... ≥ an

Such a sequence is symmetric if ai = an−i.

The method of applying the above representation theory to problems in combinatorics rests upon Corol-
lary 14. What we wish to do is to turn the set of combinatorial objects of study into a representation of
sl2, graded appropriately. Then we identify the sequence which we are considering with the dimensions of
weight spaces and Corollary 14 implies that this sequence is symmetric and unimodal. We begin with a
motivating example involving graphs that does not rely upon computations in the representation ring R.
Then, we study R in greater depth and prove a fundamental result relating symmetric, unimodal sequences
and representations of sl2. We then apply this to some combinatorial problems that seem intuitive but are
tricky to prove with only elementary methods.

3.1 A Motivating Example: Graphs

Our motivating example comes from graphs. The method of proof is from Stanley and the author wishes to
thank Dr. Daniel Litt for bringing the topic to his attention. For our purposes, a graph is a set G of n points,
called vertices and a set of 2 element subsets called edges. Note that this excludes edges that are loops and
multiple edges between the same two vertices. An isomorphism of graphs is a bijection φ : G → G that
sends edges to edges. We define the numbers gnk to be the number of isomorphism classes of graphs with n
vertices and k edges. We will see that the sequences {gn,2i} and {gn,2i+1} are symmetric and unimodal. To
do this, we will apply Corollary 14, but we need to associate these to a representation of sl2. Let Wn be the
vector space over C with basis graphs on n vertices. Note that we have

Wn =

(n
2)⊕
i=0

Wn
i

where Wn
i is the space spanned by graphs with n vertices and k edges. We wish to look at isomorphism

classes rather than general graphs, so we need to find a away to reduce the space W . This is the content of
the following proposition.
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Proposition 24. There is a natural action of the symmetric group Sn on Wn that preserves the grading,
namely a permutation simply acting on the vertices. Let Unk = (Wn

k )Sn denote the subspace invariant under
this action. Then gnk = dimUnk .

Proof. Let

φ =
∑
σ∈Sn

σ

Then we see that Unk = φ(Wn
k ). To see this, note that the image of φ is clearly invariant under the action

of the symmetric group. Moreover, any v ∈ Wn
k invariant under the action of Sn is such that φ(v) = (n!)v.

Clearly there is a bijection from the isomorphism classes to the basis for Unk defined by {φ(v)} for v ∈ V
representative elements. �

We define two operators for each i < j ∈ {1, 2, ..., n}:

aij(g) =

{
g ∪ {i, j} if {i, j} is not an edge of g

0 otherwise

bij(g) =

{
g \ {i, j} if {i, j} is an edge of g

0 otherwise

Observe that if {i, j} 6= {i′, j′}, then aij and bi′,j′ commute and so [aij , ai′,j′ ] = 0. We also note that

[aij , bij ] =

{
g if {i, j} ∈ g
−g otherwise

We now define

E =
∑

1≤i<j≤n

aij

F =
∑

1≤i<j≤n

bij

Then, combining the above observations, we get that

[E,F ] =
∑

1≤i<j≤n

aijbijg − bijaijg =
∑
{i,j}∈g

g −
∑
{i,j}6∈g

g

= kg − (

(
n

2

)
− k)g = (2k −

(
n

2

)
)g

Let us define for g ∈Wn
k

Hg = (2k −
(
n

2

)
)g

We have seen that [E,F ] = H. We need to check

[H,E] = 2E

[H,F ] = −2F

Let g ∈Wn
k . Note

E : Wn
k →Wn

k+1

F : Wn
k →Wn

k−1

7



Then let us check

[H,E]g = HEg − EHg = (2(k + 1)−
(
n

2

)
)Eg − (2k −

(
n

2

)
)Eg = 2Eg

[H,F ]g = HFg − FHg = (2(k − 1)−
(
n

2

)
)Fg − (2k −

(
n

2

)
)Fg = −2Fg

Thus we have [H,E] = 2E, [H,F ] = −2F and [E,F ] = H; by the discussion preceding Proposition 10, we
have defined a representation of sl2.

Note that the actions of E,F,H commute with the action of Sn. Let N =
(
n
2

)
. Thus

U =

N⊕
k=0

Unk

is a representation of sl2 under the action of E,F,H. Applying Corollary 14 and Proposition 24, we have
proven the following:

Theorem 25. Let gnk be the number of isomorphism classes of graphs on n vertices with k edges. Let
N =

(
n
2

)
. Then the sequences

{gn,2i}, {gn,2i+1}
are symmetric and unimodal with gn,k = gn,N−k.

3.2 Computations in R

Before we begin, we assume the notion of

Definition 26. A polynomial f = a0 + a1x+ ...+ anx
n is symmetric (resp. unimodal) if the corresponding

sequence {ai} is symmetric (resp. unimodal).

In some sense, our main result relates symmetric unimodal polynomials to representations of sl2.

Theorem 27. There is a bijection from the set of symmetric unimodal polynomials f = a0+...+anx
n ∈ Z[x]

such that a0 > 0 and the set of homogeneous elements in R. This bijection preserves multiplication and is
given by

f 7→ x− deg ff(x2)

Moreover, we have the correspondence

{f : 2|deg f} ↔ Re

{f : 2 - deg f} ↔ Ro

Proof. Let f = a0 + a1x+ ...+ anx
n be a symmetric unimodal polynomial with positive coefficients. Then

we see that

f 7→ x−n(a0 + a1x
2 + ...+ a0x

2n)

= a0(xn + xn−2 + ...+ x−n) + (a1 − a0)(xn−2 + xn−4 + ...+ x2−n)

+...+ (ai − ai−1)(xn−2i + xn−2i−2 + ...+ x2i−n) + ...

= a0Vn+1 + (a1 − a0)Vn−1 + ...+ (ai − ai−1)Vn+1−2i + ...

By unimodality, we have ai+1 − ai ≥ 0 so this is a representation. Moreover, given a representation W of
sl2, let W =

⊕
ciVi. The representation is finite dimensional so let N be the maximal i such that ci 6= 0.

Then let a0 = cN and let ai = cN + cN−1 + ...+ cN−2i. These constructions are clearly inverse to each other.
To see that this map preserves multiplication, note that

fg 7→ x− deg(fg)fg(x2) = (x− deg ff(x2))(x− deg gg(x2))

The last statement is obvious given the above. �
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While a somewhat easy result, Theorem 27 has deep implications. One easy result is

Corollary 28. The product of symmetric unimodal polynomials is symmetric unimodal.

Proof. Trivial given Theorem 27. �

We now change tack a bit and do some computations that will eventually justify the work we have done
above.

Recall that [n] = 1− qn and that[
n

r

]
=

[n][n− 1]....[n− r + 1]

[r][r − 1]...[1]
=

(1− qn)(1− qn−1)....(1− qn−r+1)

(1− q)...(1− qr)

is the generalized binomial coefficient. We define the symmetric Gaussian polynomial as

Gn,r(X,Y ) =
(Xn − Y n)(Xn−1 − Y n−1)...(Xn−r+1 − Y n−r+1)

(X − Y )...(Xr − Y r)

So we see that Gn,r(1, q) =
[
n
r

]
. It is easy to see by induction that the following equations hold

n∏
j=1

(1 +Xn−jY j−1t) =

n∑
r=0

(XY )
r(r−1)

2 Gn,r(X,Y )tr (1)

n∏
j=0

(1−Xn−jY j−1t)−1 =

∞∑
r=0

Gn+r,r(X,Y )tr (2)

The proofs of these two generating functions are easy but tedious; the curious reader is referred to [Alm82].
Now, we introduce two members of R[x]JtK,

λ(V ) =
∑
r≥0

(

r∧
V )tr

σ(V ) =
∑
r≥0

(Symr V )tr

Now, we prove the following.

Proposition 29. Let V be a representation of sl2. Then the following identities hold

λ(Vn+1) =

n∏
j=0

(1 + xn−2jt)

σ(Vn+1) =

n∏
j=0

(1− xn−2jt)−1

Proof. We prove the first identity. The proof of the second is almost identical, but the confused reader is
referred either to [AF, III.1.3] or to [Alm82, 1.6], although there is a slight error in the latter.

We induct on n. First note that

λ(V2) = 1 + V2t+

2∧
V2t = 1 + (x+ x−1)t+ t2 = (1 + xt)(1 + x−1t)

Thus our base case holds. Now suppose that the result holds for all 1 ≤ m ≤ n. Recall

p∧
(V ⊕W ) =

⊕
i+j=p

i∧
V ⊗

j∧
V

9



Thus we have
λ(Vn+1 ⊕ Vn−1) = λ(Vn+1)λ(Vn−1)

so
λ(Vn+1) = λ(Vn−1)−1λ(Vn+1 ⊕ Vn−1)

Recall from Proposition 21 that Vn ⊗ V2 = Vn+1 ⊕ Vn−1. Considering the weight spaces, it is apparent that

r∧
(Vn ⊗ V2) =

r∧
Vn ⊕ (

r−1∧
Vn)⊗ V2 ⊕ (

r−2∧
Vn)⊗ (

2∧
V2)

Thus we get that λ(Vn ⊗ V2) = λ(Vn)λ(V2). Thus, we have

λ(Vn+1) = λ(Vn−1)−1λ(Vn ⊗ V2) = λ(Vn−1)−1λ(Vn)λ(V2)

Applying the inductive hypothesis and rearranging yields us the result. �

Putting together all of the above, we get the following result.

Proposition 30. We have that

r∧
Vn = Gn,r(x, x

−1)

Symr Vn+1 = Gn+r,r(x, x
−1)

Proof. This follows immediately by letting X = x and Y = x−1 in Equations (1) and (2) and using Propo-
sition 29. �

Remark 31. The above results are actually special cases of a much more general result involving Schur
Functors. In particular, there are nice ways of expressing a genral Schur functor in R and the symmetric
and exterior powers are special cases of Schur functors. There are many beautiful results involving Schur
functors, all of which lie outside the scope of this talk. The interested reader is referred to [Alm], [FH],
[Alm82], or [AF].

Corollary 32 (Generalized Hermite Reciprocity). For any n, r ∈ N, we have

Symr Vn+1
∼= Symn Vr+1

Proof. Trivial given Proposition 30. �

Remark 33. Putting r = 1 into the above yields the well-known fact that Vn = Symn−1 V2. It might
be interesting for the reader to consider what the actions of E,F,H are when the Vn are considered as
homogeneous parts of C[x, y]. In fact, we can consider the operators

E = x
∂

∂y

F = y
∂

∂x

H = x
∂

∂x
− y ∂

∂y

acting on Symn−1 V2 and it is easy to see that this is an irreducible representation of sl2 and so isomorphic
to our Vn by Theorem 11.

We now apply the above exposition to a surprisingly hard, if simply stated, problem.
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3.3 Partitions

The study of integer partitions has a fairly long history and appears in many surprising places. We do not
have the time to explore much of this theory at all unfortunately, but we do present an interesting fact about
partitions whose proof has no elementary counterpart of which the author knows.

Definition 34. A partition of an integer n is a tuple λ = (α1, α2, ..., αr) of nonnegative integers such that
α1 + α2 + .... + αr = n and αi ≥ αi+1. We define the length of a partition to be k such that αk > 0 and
αk+1 = 0. We let the maximal part of λ is α1.

Counting partitions is in general a hard problem. If p(n) is the number of partitions of n, it is a rather
difficult fact that

p(n)→ exp(π

√
2n

3
)

asymptotically as n → ∞. We define pkl(n) to be the number of partitions of n with length at most k and
maximal part at most l. We wish to show that for fixed k, l that the sequence {pkl(n)} is symmetric and
unimodal. We begin by proving a theorem.

Proposition 35. For any n, r ∈ N, the polynomials
[
n
r

]
,
[
n+r
r

]
are symmetric and unimodal.

Proof. By Proposition 30 and Theorem 27 we have that the polynomial
[
n
r

]
corresponds to

∧r
Vn and

[
n+r
r

]
corresponds to Symr Vn+1. �

Remark 36. There are many proofs of the fact that
[
n
r

]
is symmetric and unimodal, but this result is not

so easy to do in an elementary way. The above proof has the advantage that after the representation theory
has been set up, there is essentially no work that has to be done, making this the most elegant of all the
proofs of this fact.

We are now ready to prove the desired result.

Theorem 37. For fixed k, l ∈ N, the sequence {pkl(n)} is symmetric and unimodal.

Proof. We see the following by showing that[
k + l

k

]
=

∞∑
n=0

pkl(n)qn

By Proposition 35, if we have the above then we are done. Let

P (k, l) =

∞∑
t=0

pkl(n)qn

We will show that P (k, l) =
[
k+l
k

]
. We begin by letting P ′(d, r) = P (r, d − r) and we will show that

P ′(d, r) =
[
d
r

]
. Recall the following trivially verifiable properties of the q-binomial[

d

r

]
=

[
d

d− r

]
[
d

r

]
=

[
d− 1

r − 1

]
+ qr

[
d− 1

r

]
[
d

0

]
= 1[

d

1

]
= 1 + q + q2 + ...+ qd−1

Note that it is easy to see that P ′(d, 1) = 1 + q+ ...+ qd−1 and that P ′(d, 0) = 1. Moreover, it is easy to see
by taking the complement of the Young diagram in a k × l box, that P ′(d, r) = P (d− r, r) = P (r, d− r) =

11



P ′(d, d − r). (Taking this complement is equivalent to sending the partition (λ1 ≥ ... ≥ λk) 7→ (l − λk ≥
l − λk−1 ≥ ... ≥ l − λ1). Clearly the weight of the image partition is kl − |λ| and this is a bijective
correspondence). If we show that P ′(d, r) = P ′(d− 1, r− 1) + qrP ′(d− 1, r) then we are done by induction.
To see this last, we note that this is equivalent to showing

pk,l(n) = pk−1,l(n− l) + pk,l−1(n)

To see this last, we note that any partition with greatest part at most l either has maximal part l or has
maximal part less than l. There are pk,l−1(n) partitions in the latter category and pk−l,l(n− l) partitions in
the former category. Thus we are done. �

The above demonstrates the power of Theorem 27, but suppose we wish to find an explicit representation
of sl2 that gives us our sequence. This, too, falls immediately out of Theorem 37 and Corollary 32. We get
the representation Symk Syml V2. To see the explicit construction, let

λ = (a1, a1, .., a1 ≥ a2, a2, ... ≥ ... ≥ ar, ...ar)

be a partition of n and let ni be the number of times that ai appears in λ. Then we let vai ∈ Syml V2 such
that vai = xaiyl−ai . Then the correspondence between partitions λ and elements of Symk Syml V2 is given
by

λ 7→ vn1
a1 v

n2
a2 ...v

nr
ar

We immediately realize that the action of H on vλ is just multiplication by kl−2|λ|. Thus we get immediately
that pkl(n) is simply the dimension of the weight space of the above representation with weight kl − 2n,
thereby yielding an explicit proof of Theorem 37.

We conclude by mentioning a result that easily falls out of the above discussion. Although the original
proof of the result is much different ([Alm, Corollary 3.16]), our method is an elegant way of demonstrating
the following fact. The interested reader is advised to prove it himself.

Theorem 38 (Cayley-Sylvester’s Fundamental Theorem). The number of linearly independent homogeneous
polynomials of degree k in l + 1 variables that are invariant under the natural action of SL2(C) is

pkl(
kl

2
)− pkl(

kl

2
− 1)

Hint. We do not prove the above theorem, but we provide the following hint. Consider that the only
irreducible SL2(C) module of invariants is V1. Thus the above number is precisely the coefficient on V1 in
the decomposition of Symk Vl+1.

3.4 Conclusion

Over the course of this miniseries, we have seen representation theory applied to elementary combinatorial
results. One ‘serious’ application of the theory above is to algebraic geometry. In particular

Theorem 39 (Hard Lefschetz). Let X be a complex projective variety that locally looks like Cn/Γ, where Γ
is a finite group. Let H∗(X) be the (singular) cohomology ring and let βi = dimCH

i(X). Then the sequences
{β0, β2, ..., β2n} and {β1, β3, ..., β2n−1} are symmetric unimodal. Thus, Hi(X) ∼= H2n−i(X).

is a direct consequence of techniques developed above. There is a great plethora of results that use the
above techniques to prove things that do not seem so related to the original theory. The interested reader is
referred to many of Stanley’s works, starting with [Sta89].
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